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DISTANCE DOMAINS: COMPLETENESS

TRISTAN BICE

Abstract. We explore extensions of domain theoretic concepts,
replacing transitive relations with general non-symmetric distances.
These lead to a generalization of Smyth-completeness which we
characterize in various ways analogous to our previous Yoneda-
completeness characterizations.

Motivation

A number of works have extended domain theory from posets to more
metric-like structures (see [8]). However, both the classical theory and
these generalizations tend to focus on just one aspect of the dual nature
of domains. Our primary goal is explore the other aspect.

More precisely, the standard approach to domain theory is to start with
a partial order ≤ and then define its way-below relation ≪, a transitive but
generally non-reflexive relation. An alternative approach is to start with
a transitive relation ≪ and then define its lower order ≤. Using maxima
rather than suprema, one also obtains dual notions of completeness and
continuity for ≪. This is the approach we generalize, working with a
general non-symmetric distance d and its lower hemimetric d.

Also, previous works have developed quantitative domain theory in a
highly category or fuzzy theoretic way (see, e.g., [10] and [15]). Another
goal of our paper is to provide a more classic approach through topology,
metric and order theory, building on [9]. This leads to certain natural
generalizations and should also be more accessible to analysts.
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8 T. BICE

In particular, we have two examples in mind from non-commutative
topology. First, consider the hereditary C*-subalgebras H(A) of a C*-
algebra A, ordered by inclusion ⊆. When A is commutative, these cor-
respond to the open subsets of a locally compact Hausdorff topological
space, a well-known example of a classical domain. However, H(A) may
fail to be a domain in general, even for basic non-commutative C*-algebras
like C([0, 1],M2)(=continuous functions from the unit interval to two by
two complex matrices). The key observation here is that H(A) does,
however, always form a distance domain when we replace the inclusion
ordering ⊆ with the Hausdorff distance d on the positive unit balls B1

+,

d(B,C) = sup
b∈B1

+

inf
c∈C1

+

∥b− bc∥.

Here, the way-below distance d comes from the reverse Hausdorff distance

d(B,C) = inf
c∈C1

+

sup
b∈B1

+

∥b− bc∥.

Incidentally, (b, c) 7→ ∥b−bc∥ is itself a natural example of a non-hemimetric
distance on A1

+ (see [4, Proposition 2.3]).
There can also be merit in quantifying classical domains; for example,

consider the lower semicontinuous [0,1]-valued functions LSC(X, [0, 1]) on
some compact Hausdorff X with the pointwise ordering ≤. This is another
well-known example of a classical domain (see [8, Example I-1.22]). But
when we replace ≤ with

d(f, g) = sup
x∈X

(f(x)− g(x))+,

we get an even nicer structure. Specifically, LSC(X, [0, 1]) becomes an
algebraic domain, in an appropriate quantitative sense, where the fi-
nite/compact elements (see [9, Definition 7.4.56]) are precisely the contin-
uous functions C(X, [0, 1]) (by a slight generalization of Dini’s theorem).
Moreover, this extends to the lower semicontinuous elements of A∗∗1

+ for
a much larger class of ordered Banach spaces A (see [2]).

Apart from the inherent interest in generalization, we feel examples
like this justify the study of distance domains. So from now on we put
functional analysis to one side to develop a general domain theory for
non-symmetric distances.

Outline

While category theory is not our focus, we do consider one very elemen-
tary category GRel of generalized relations. Indeed, throughout we make
use of various interpolation assumptions which are concisely described by
composition ◦ in GRel. In §1, we describe the basic properties of GRel
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and set out much of the notation used throughout. Note that our func-
tions take values in [0,∞], rather than the more general quantales often
considered elsewhere. This is primarily to reduce the notational burden,
which is already quite heavy due to the various topologies, relations, and
operations we need to consider. In any case, [0,∞] valued functions are
perfectly suited to the analytic examples we have in mind.

As mentioned above, one of our primary goals is to generalize previous
work on hemimetrics to distances, functions merely satisfying the triangle
inequality. This generalization is crucial because we want to develop a
dual theory of distance domains starting from distance analogs of the way-
below relation. In §2, we discuss these distances d and their associated
upper and lower hemimetrics d and d.

Next, in §3, we briefly introduce the uniform preorder w and equiva-
lence relation ≈ on generalized relations. This generalizes the usual uni-
form equivalence of metrics and is needed to describe weak interpolation
assumptions required for the best results (e.g., see Proposition 5.6).

In §4, we introduce balls and their associated topologies. In particular,
we show how balls characterize upper and lower hemimetrics and how
the preorders ≤d and ≤d defined from d coincide with the specialization
preorders of ball topologies.

As we deal with non-hemimetric distances, it is natural to consider
a certain strict version <d of ≤d, which we discuss in §5. This will be
particularly important in our future work when we exhibit equivalences
between distance domains and classical domains of formal balls. As a
preliminary to this, here we investigate the relationship between <d and
≤d under certain interpolation assumptions.

In §6, we make some elementary observations on nets and their limits.
This leads to §7, where we discuss two natural generalizations of Cauchy
nets. Note here, as elsewhere, basic properties of hemimetrics can often
be extended to distances by replacing d with d or d where appropriate.

We also aim to develop the theory in a more topological way. The
key here is to consider topologies generated by open holes as well as
balls. In §8, we characterize convergence in combinations of ball and hole
topologies.

Yet another one of our goals is to explore the connection between topo-
logical and relational extensions of metric and order theoretic concepts.
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Topological Relational
Nets Subsets

d-Cauchy d-directed
d◦
◦-limit d-supremum

d•
◦-limit d-maximum

Figure 1. Metric vs Order Analogs

As with hole topologies, we feel the relational notions have not received
the attention they deserve. Even apart from their intrinsic interest, these
relational notions can serve as a useful intermediary between classical
order theoretic concepts and their topological generalizations. So, in §9,
we define d-directed subsets and explore their relation to d-Cauchy nets.

Suprema are usually considered the poset analog of limits. However,
maxima, in an appropriate sense, can be better suited to non-reflexive
transitive relations. In §10, we extend these concepts to distances d and
examine their connection to suprema and maxima relative to ≤d and <d.

In §11, we define topological and relational notions of completeness and
explain how they generalize standard notions of Yoneda, Smyth, metric,
and directed completeness. We then show how to turn d-Cauchy nets into
d-directed subsets under several interpolation conditions. These allow
d•
◦-completeness (=Smyth completeness for hemimetric d) to be derived

from d-max-completeness in Corollary 11.8, complementing the Yoneda
completeness characterizations in [3].

In our future work we will discuss generalizations of continuity and
the resulting generalizations of domains, in particular, showing how to
complete (generalized) predomains to domains via the (reverse) Hausdorff
distance and the formal ball construction.

1. Generalized Relations

The traditional category theoretic approach to quasimetric spaces is
to take each quasimetric as its own category, with the elements of the
space as objects and the values of the quasimetric as morphisms, as in
[14]. Alternatively, quasimetric spaces are sometimes considered as the
objects of a category with Lipschitz maps as morphisms, as in [9, Defini-
tion 6.2.13]. However, the constructions we consider are best described in
a category with quasimetrics, and even more general binary functions, as
the morphisms instead. This is like the category of modules considered in
[11, §2.3], except that our objects are just sets, without any distinguished
hemimetric structure.
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Specifically, we consider any d ∈ [0,∞]X×Y (= functions from X × Y
to [0,∞]) as a generalized relation from X to Y . We extend the standard
infix notation for classical relations to generalized relations and define

xdy = d(x, y).

Just like the category Rel of classical relations, generalized relations form
the morphisms of a category GRel when composition d ◦ e ∈ [0,∞]X×Y

of d ∈ [0,∞]X×Z and e ∈ [0,∞]Z×Y is defined by

x(d ◦ e)y = inf
z∈Z

(xdz + zey).

In fact, Rel becomes a wide subcategory of GRel when we identify each
relation <⊆ X×Y with its characteristic function (as we do from now on):

< (x, y) =

{
0 if x < y

∞ otherwise.

For any d ∈ [0,∞]X×Y , < ⊆ [0,∞][0,∞], and r ∈ [0,∞], we define

x <d
r y ⇔ xdy < r.

In particular, we let ≤d = ≤d
0 , so

x ≤d y ⇔ xdy = 0.

Equivalently, ≤d is the relation identified with ∞d, where ∞0 = 0 and
∞r = ∞, for r > 0. Note d 7→ ≤d is a left inverse of the inclusion from
Rel to GRel, which is also functorial in that

≤d ◦ ≤e ⊆ ≤d◦e .

Various properties of Rel also extend to GRel. For example, as in
[16], GRel is a category with involution dop defined by

xdopy = ydx.

Also, GRel is a 2-category, namely a 2-poset, with the pointwise order

d ≤ e ⇔ ∀x ∈ X ∀y ∈ Y xdy ≤ xey,

which is compatible with both ◦ and op. Each hom-set [0,∞]X×Y is also
a complete lattice with minimum 0 and maximum ∞ where, for x ∈ X,
y ∈ Y and r ∈ [0,∞],

xry = r.

In particular, we have “intersections” d ∨ e and symmetrizations

d∨ = d ∨ dop,

when X = Y , in which case we define ≡d = (≤d)∨ = ≤d∨
, i.e.,

x ≡d y ⇔ xdy = 0 = ydx.
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In fact, the only thing stopping GRel from being an allegory, in the sense
of [7], is the modularity requirement.

However, as in division allegories, we do have Kan extensions/lifts.
Namely, for d ∈ [0,∞]X×Z and e ∈ [0,∞]Y×Z , define d/e ∈ [0,∞]X×Y by

x(d/e)y = sup
z∈Z

(xdz − yez)+,

where r+ = r∨0, for r ∈ [0,∞], and we take ∞−∞ = 0. This guarantees

(1.1) a ≤ b+ c ⇔ a− b ≤ c,

for all a, b, c ∈ [0,∞]. It also means that, for all c ∈ [0,∞),

(1.2) a+ (−b+ c) ≤ (a− b) + c.

Also, for d ∈ [0,∞]Z×Y and e ∈ [0,∞]Z×X , define e\d ∈ [0,∞]X×Y by

x(e\d)y = sup
z∈Z

(zdy − zex)+.

Proposition 1.1. For d ∈ [0,∞]X×Z , e ∈ [0,∞]Z×Y , and f ∈ [0,∞]X×Y ,

f/e ≤ d ⇔ f ≤ d ◦ e ⇔ d\f ≤ e.

Proof. Simply note that, for all x ∈ X, y ∈ Y , and z ∈ Z,

xfy − zey ≤ xdz ⇔ xfy ≤ xdz + zey ⇔ xfy − xdz ≤ zey. �

2. Distances

We call d ∈ [0,∞]X×X a distance1 if it satisfies the triangle inequality

(△) d ≤ d ◦ d.

Equivalently, (△) is saying that, for all r, s ∈ (0,∞) and x, y, z ∈ X,

x <d
r z <d

s y ⇒ x <d
r+s y.

In particular, < ⊆ X × X is a distance if and only if it is transitive in
the usual sense. As d 7→ ≤d is functorial, this means ≤d is transitive
whenever d is a distance. As in [9, Definition 6.1.1], we call a distance d

(1) a hemimetric if ≤d is a preorder and
(2) a quasimetric if ≤d is a partial order.

1Functions merely satisfying the triangle inequality do not appear to have been
named before. We feel “distance” is appropriate, as this is already used informally to
refer to various functions which at least satisfy the triangle inequality. But if we were
to follow the tradition of adding prefixes to “metric” for weaker notions, “demimetric”
or something similar might be appropriate.
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(Recall that a preorder is a reflexive (= ⊆ ≤) transitive relation and a
partial order is an antisymmetric (≤ ∩ ≤op ⊆ =) preorder).

Non-hemimetric distances have rarely been considered until now. How-
ever, the extra generality is vital if we want to consider distance analogs of
non-reflexive transitive relations, like the way-below relation from domain
theory. But there are two closely related hemimetrics associated with any
generalized relation, which will be crucial to our later work.

To avoid repetition, we now make the following standing assumption.

We are given sets X and Y and functions d, e ∈ [0,∞]X×Y .

Definition 2.1.

d = d/d ∈ [0,∞]X×X i.e., xdz = sup
y∈Y

(xdy − zdy)+.(2.1)

d = d\d ∈ [0,∞]Y×Y i.e., zdy = sup
x∈X

(xdy − xdz)+.(2.2)

We call d and d the upper and lower hemimetric of d, respectively.

This terminology is justified by the following.

Proposition 2.2. Both d and d are hemimetrics and d = d ◦d = d ◦d.

Proof. d ≤ (= ◦d) implies d = d/d ≤ =, so ≤d is reflexive. As d/d ≤ d,

d ≤ d ◦ d ≤ (= ◦ d) = d and

d ≤ d ◦ d ≤ d ◦ d ◦ d, so

d = d/d ≤ d ◦ d; i.e., d is a distance.

Thus, d is a hemimetric with d = d ◦ d. As dop = dop, dop; hence d is a
hemimetric with dop = dop ◦ dop = dop ◦ dop and hence d = d ◦ d. �

Proposition 2.3. If X = Y (i.e., d ∈ [0,∞]X×X), then2

d ≤ d ⇔ d ≤ d ⇔ d is a distance;(2.3)

d ≥ d ⇔ d ≥ d ⇔ ≤d is reflexive;(2.4)

d = d ⇔ d = d ⇔ d is a hemimetric.(2.5)

Proof. We consider d, and the d statements then follow from dop = dop.
(2.3) d ≤ d ◦ d ⇔ d/d ≤ d.
(2.4) If d ≤ d, then d ≤ =. If d ≤ =, then d = (d/=) ≤ d/d = d.
(2.5) Immediate from (2.3) and (2.4). �

2The ⇐ in (2.5) is a form of the Yoneda lemma (see [9, Exercise 7.5.26].)
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Example 2.4. Consider f ,q ∈ [0, 1][0,1]×[0,1] given by

xfy = x(1− y)

xqy = (x− y)+.

Here, q is the restriction of the usual quasimetric on [0,∞] (note that (△)
for q follows from the subadditivity of +), and f is also a distance as

x(1− y) = x(1− z + z)(1− y) ≤ x(1− z) + z(1− y).

Because (x−y)+ = sup
z∈[0,1]

(x(1−z)−y(1−z))+ = sup
z∈[0,1]

(z(1−y)−z(1−x))+,

q = f = f .

Before moving on, we make an observation about restrictions. First,
identify Z ⊆ Y with the characteristic function on Y × Y of = on Z; i.e.,

Z(x, y) =

{
0 if x = y ∈ Z

∞ otherwise,

so d ◦ Z ◦ d then denotes composition restricted to Z, i.e.,

x(d ◦ Z ◦ d)y = inf
z∈Z

(xdz + zdy).

Proposition 2.5. If d ◦ Z ◦ d ≤ d, then d = d|X×Z .

Proof. For any w, x ∈ X, we see that

wd|X×Zx = sup
z∈Z

(wdz − xdz) ≤ sup
y∈Y

(wdy − xdy) = wdx,

so d|X×Z ≤ d. Conversely, for any w, x ∈ X,

wdx = sup
y∈Y

(wdy − xdy)+

≤ sup
y∈Y

(wdy − x(d ◦ Z ◦ d)y)+

= sup
y∈Y

(wdy − inf
z∈Z

(xdz + zdy))+

= sup
y∈Y,z∈Z

(wdy − xdz − zdy)+

≤ sup
z∈Z

(wdz − xdz)+

= wd|X×Zx,

where, by Proposition 2.2, wdy ≤ wdz+ zdy follows from d = d ◦d. �
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3. The Uniform Preorder

As mentioned above, we usually view GRel as a 2-poset with respect
to the pointwise ordering on morphisms. However, there is also a weaker
2-proset structure based on the notion of uniform equivalence for metrics.
Specifically, we define the uniform preorder w by

d w e ⇔ ∀Z ⊆ X × Y ( inf
(x,y)∈Z

xey = 0 ⇒ inf
(x,y)∈Z

xdy = 0).

Note that w depends only on the values of d and e close to 0. More
precisely, we show below that d w e is equivalent to

∀ϵ > 0 ∃ δ > 0 ∀x ∈ X ∀y ∈ Y (xey < δ ⇒ xdy < ϵ).

In particular, ≈, defined by

d ≈ e ⇔ d w e w d,

does indeed extend the usual uniform equivalence relation on metrics.
Indeed, w plays a similarly fundamental role in applications (e.g., see
[4]).

Proposition 3.1. d w e ⇔ ∀ϵ > 0 ∃ δ > 0 (<e
δ ⊆ <d

ϵ ).

Proof. Assume that for every ϵ > 0, we have some δ > 0 such that xey < δ
implies xdy < ϵ. For any Z ⊆ X × Y with inf(x,y)∈Z xey = 0, we have
(x, y) ∈ Z with xey < δ, so xdy < ϵ; hence inf(x,y)∈Z xdy < ϵ. Thus,
inf(x,y)∈Z xdy = 0, as ϵ > 0 was arbitrary, i.e., d w e.

Conversely, assume we have some ϵ > 0 such that for all δ > 0, there
exists some x ∈ X and y ∈ Y with xey < δ, but xdy ≥ ϵ. In particular,
we have (xn, yn) with xneyn < 1/n, but xndyn ≥ ϵ. Thus, for

Z = {(xn, yn) : n ∈ N},

we have inf(x,y)∈Z xey = 0, but inf(x,y)∈Z xdy ≥ ϵ > 0, i.e., d ̸w e. �

Note that for (the characteristic function of) any relation < and r ∈
(0,∞),

<<
r = < .

Thus, by Proposition 3.1, w reduces to inclusion ⊆ on Rel, so w is also
a valid extension of the 2-poset structure from Rel to GRel.

Also note that w can be expressed in terms of d
e ∈ [0,∞][0,∞] defined

by
d
e (r) = sup

xey≤r
xdy;

i.e., d
e is the smallest monotone function satisfying

d
e (xey) ≥ xdy.
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Specifically, from Proposition 3.1, it follows that

(3.1) d w e ⇔ lim
r→0

d
e (r) = 0.

4. Balls

Often it will also be convenient to consider the unary functions defined
from binary functions by fixing one coordinate. Specifically, for x ∈ X
and y ∈ Y , define xd ∈ [0,∞]Y and dy ∈ [0,∞]X by

xd(y) = xdy = dy(x).

Again, we identify subsets with characteristic functions, so, for <⊆ X×Y ,

x < = {y ∈ Y : x < y} and
< y = {x ∈ X : x < y}.

In particular, we define the open upper and lower d-balls with centre c in
X or Y and radius r by

c•r = c <d
r = {y ∈ Y : cdy < r} and(4.1)

cr• = <d
r c = {x ∈ X : xdc < r}.(4.2)

These characterize d and d as follows (taking inf ∅ = ∞).

Proposition 4.1.

xdz = inf{ϵ > 0 : ∀r ∈ (0,∞) z•r ⊆ x•
r+ϵ}.

zdy = inf{ϵ > 0 : ∀r ∈ (0,∞) zr• ⊆ yr+ϵ
• }.

Proof. If xdz < ϵ, then, for any r ∈ (0,∞) and w ∈ z•r , Proposition 2.2
yields xdw ≤ xdz+zdw < ϵ+r, so w ∈ x•

r+ϵ, i.e., z•r ⊆ x•
r+ϵ. Conversely,

say ϵ > 0 and z•r ⊆ x•
r+ϵ for all r ∈ (0,∞), and take w ∈ X. If xdw = ∞,

then (xdw − zdw)+ = 0 < ϵ. Otherwise, for all r ∈ (zdw,∞), we have
w ∈ z•r ⊆ x•

r+ϵ; hence (xdw−zdw)+ < r+ϵ−zdw. Because r > zdw and
w ∈ X were arbitrary, xdz ≤ ϵ. The d statement follows by duality. �

In particular, for any < ⊆ X × Y ,

x< z ⇔ (z <) ⊆ (x <),(4.3)
z < y ⇔ (< z) ⊆ (< y).(4.4)

In [6] before Lemma 3.1, these are called the “upper quasiorder” and “lower
quasiorder” of < (we say preorder instead of quasiorder). For example,
the upper and lower preorders defined from the strict ordering < on [0,∞]
both coincide with the usual ordering on [0,∞], which we denote by ≤ as
usual. More generally, if X is a domain with way-below relation ≪, then
≪ gives back the original ordering on X. From this dual point of view,
the lower preorder defined from a transitive relation is just as important
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as the way-below relation defined from a partial order. Our thesis is that
the same is true for non-symmetric distances as well.

Let d• denote the topology on Y generated (as arbitrary unions of
finite intersections) by open upper d-balls with centres in X; i.e.,

d• is the topology on Y with subbasis (x•
r)x∈X,r∈(0,∞).

Since x•
∞ =

∪
r∈(0,∞) x

•
r and x•

0 = ∅ are both d•-open anyway, we could
actually take r ∈ [0,∞]. Likewise, we let d• denote the topology on X
generated by open lower d-balls with centres in Y ; i.e.,

d• is the topology on X with subbasis (yr•)y∈Y,r∈(0,∞).

We discuss these further in §8. For the moment we just note that ≤d and
≤d are the specialization preorders coming from the d• and d• topologies.

Proposition 4.2.

z ≤d y ⇔ z is in the d•-closure of {y}.(4.5)

x ≤d z ⇔ x is in the d•-closure of {z}.(4.6)

Proof. Note that zdy = 0 means xdy ≤ xdz for all x ∈ X, which is
equivalent to saying that every open upper d-ball containing z must also
contain y. Thus, the same is true of intersections of such balls and hence
unions of such intersections, i.e., all d•-open sets. This proves that (4.5)
and (4.6) again follow by duality. �

5. The Strict Order

Here, we examine a strict version <d of ≤d satisfying an analog of
d = d ◦ d = d ◦ d from Proposition 2.2. First, consider the following.

Proposition 5.1. For any r, s ∈ (0,∞) with r < s,

x <d
r y ⇒ (x ≤d

r ) is a d•-neighbourhood of y ⇒ x <d
s y.

Proof. If x <d
r y, then δ = r−xdy > 0, and for any z ∈ (y <

d
δ ), d = d◦d

from Proposition 2.2 yields

xdz ≤ xdy + ydz < xdy + δ = r.

Thus, y ∈ (y <
d
δ ) ⊆ (x ≤d

r ), so (x ≤d
r ) is a d•-neighbourhood of y.

On the other hand, if (x ≤d
r ) is a d•-neighbourhood of y, then, in

particular, x ≤d
r y, so xdy ≤ r < s, i.e., x <d

s y. �

Proposition 5.1 motivates the following definition of <d.

(5.1) x <d y ⇔ (x ≤d) is a d•-neighbourhood of y.
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Because d is a hemimetric, x <d y is equivalent to saying there is some
open upper d-ball with centre y which is entirely d-above x; i.e.,

x <d y ⇔ ∃ ϵ > 0 (y <d
ϵ ) ⊆ (x ≤d)(5.2)

⇔ ∃ ϵ > 0 ∀z ∈ X (y <d
ϵ z ⇒ x ≤d z).

When d itself is a hemimetric, Proposition 2.2 yields d = d, so (4.5)
and (5.1) show that <d is the d•-topological way-below relation ≺≺ fa-
miliar from M. Erné’s c-spaces (see [12, §2.5]). In fact, if one considers
the motivating example from [12], namely (C0(X)+,≺≺) where f ≺≺ g
means f ≤ (g − ϵ)+ for some ϵ > 0, then, again, we see that ≺≺ is just
<d for the hemimetric fdg = supx∈X(f(x)− g(x))+.

Proposition 5.2.

≤d ⊇ <d = ≤d ◦ <d = <d ◦ ≤d ⊇ ≤d ◦ <d .

Proof. Note that y <
d
ϵ y for all ϵ > 0. So whenever x <d y, we have ϵ > 0

with y ∈ (y <
d
ϵ ) ⊆ (x ≤d), i.e., x ≤d y and hence ≤d ⊇ <d.

If x ≤d y <d z, then, for some ϵ > 0, (z <
d
ϵ ) ⊆ (y ≤d) ⊆ (x ≤d), as

d = d ◦d by Proposition 2.2, so ydw = 0 implies xdw ≤ xdy+ ydw = 0.
Thus, x <d z and hence ≤d ◦ <d ⊆ <d.

If x <d y ≤d z, then, for some ϵ > 0, (z <
d
ϵ ) ⊆ (y <

d
ϵ ) ⊆ (x ≤d), as d is

a distance by Proposition 2.2, so zdw < ϵ implies ydw ≤ ydz+ zdw < ϵ.
Thus, x <d z and hence <d ◦ ≤d ⊆ <d.

The reverse inclusions are immediate from the fact that ≤d and ≤d

are reflexive by Proposition 2.2.
If x ≤d y <d z, then, for some ϵ > 0, (z <

d
ϵ ) ⊆ (y ≤d) ⊆ (x ≤d), as

d = d ◦d by Proposition 2.2, so ydw = 0 implies xdw ≤ xdy+ ydw = 0.
Thus, x <d z and hence ≤d ◦ <d ⊆ <d. �

Corollary 5.3. If d ∈ [0,∞]X×X is a distance, <d is transitive and

<d ◦ ≤d ⊆ <d and(5.3)

≤d ◦ <d ⊆ <d .(5.4)

Proof. Because d is a distance, d,d ≤ d by Proposition 2.2, so ≤d,≤d ⊇
≤d and <d ⊆ <d. Thus, by Proposition 5.2,

<d ◦ <d ⊆ <d ◦ ≤d ⊆ <d ◦ ≤d = <d;

<d ◦ <d ⊆ ≤d ◦ <d ⊆ ≤d ◦ <d = <d;

<d ◦ <d ⊆ ≤d ◦ <d ⊆ ≤d ◦ <d ⊆ <d . �
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By Proposition 5.2, <d = <d ◦ ≤d; hence by Proposition 1.1,

(5.5) ≤d ⊆ <d.

We can improve this to an equality under a certain interpolation condition.

Proposition 5.4. If d ◦ <d ≤ d, then ≤d = <d.

Proof. To prove <d ⊆ ≤d, say z ̸≤d y, i.e., zdy > 0, so we have x ∈ X
with xdy−xdz > 0, i.e., xdz < xdy. As d ◦ <d ≤ d, we have w ∈ X with
xdw < xdy and w <d z. Thus, 0 < xdy − xdw ≤ wdy since d = d ◦ d
by Proposition 2.2; i.e., w �d y and hence w ̸<d y, so z ≮d y. �

The similar condition d ◦ <d ≤ d can be derived from another inter-
polation condition involving dP. Specifically, for d ∈ [0,∞]X×Y , define
dP on X ×P(Y ), where P(Y ) = {Z : Z ⊆ Y }, by

x(dP)Z = sup
z∈Z

xdz.

In particular, note that x ≤dP Z means x ≤d z for all z ∈ Z. Also
consider the following condition on closed upper balls x•

r = {y ∈ Y :
xdy ≤ r} with finite radius r < ∞.

(∗) Every finite radius closed upper d-ball has a ≤d-minimum.

Proposition 5.5. (∗) ⇒ d ◦ ≤dP ≤ dP ⇒ d ◦<d ≤ d.

Proof. Take any x ∈ X and Z ⊆ Y and let r = x(dP)Z = supz∈Z xdz. If
r = ∞, then we immediately have x(d ◦ ≤dP)Y ≤ r. Otherwise, we have
a ≤d -minimum y of x•

r . Thus, xdy ≤ r and y ≤d z for all z ∈ Z, i.e.,
y ≤dP Z. So x(d ◦ ≤dP)Z ≤ r = x(dP)Z, proving the first ⇒.

For the second ⇒, assume d ◦ ≤dP ≤ dP and say xdy < r. Take δ
with 0 < δ < r − xdy so that, since d = d ◦ d by Proposition 2.2,

x(dP)(y <
d
δ ) ≤ xdy + y(dP)(y <

d
δ ) ≤ xdy + δ < r.

So we have z ∈ Y with xdz < r and z ≤dP (y <
d
δ ) and hence z <d y.

Thus, x(d ◦ <d)y < r. Because r > xdy was arbitrary, d ◦<d ≤ d. �
When d is a hemimetric, we can even weaken ≤ to w.

Proposition 5.6. If d is a hemimetric, then

d ◦ ≤dP w dP ⇒ d ◦<d ≤ d.

Proof. Assume d ◦ ≤dP w dP and say xdy < r. By Proposition 3.1,
we have some δ > 0 such that y(dP)Z ≤ δ implies y(d ◦ ≤dP)Z <
r − xdy. In particular, we can take Z = y•δ , and then we have z ∈ X
with ydz < r − xdy and z ≤dP y•δ . Thus, xdz ≤ xdy + ydz < r and
(y <

d
δ ) = (y <d

δ ) ⊆ (z ≤d), i.e., z <d y. Since r > xdy was arbitrary,
d ◦<d ≤ d. �
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Corollary 5.7. If d ◦ ≤d ≤ d and d ◦ ≤dP w dP, then ≤d = <d.

Proof. By Proposition 5.2, Proposition 2.2, and Proposition 5.6 (for d),

(d ◦ <d) ≤ (d ◦ ≤d ◦ <d) ≤ (d ◦ <d) = (d ◦ d ◦ <d) ≤ (d ◦ d) = d.

Thus, by Proposition 5.4, ≤d = <d. �

For example, (∗) and, hence, ≤d = <d, holds in C0(X)+, where again
fdg = supx∈X(f(x)−g(x))+. Indeed, for any f ∈ C0(X)+ and r ∈ [0,∞],
we see that (f − r)+ is the ≤d-minimum of the closed upper d-ball f

•
r

with centre f and radius r.
But if we consider the opposite hemimetric on C0(X) given by feg =

supx∈X(g(x)− f(x))+ and X is not compact, then <e is vacuous, owing
to the fact that any f, g ∈ C0(X)+ must vanish at infinity. This means
<e is trivial, i.e., f<e g for arbitrary f, g ∈ C0(X)+. On the other hand,
here ≤e = ≤e is just the opposite of the pointwise ordering on C0(X)+.
In particular, ≤e is not trivial, so the inclusion in (5.5) is strict.

Also, d ◦ <d ≤ d; hence, ≤d = <d holds in spaces of formal balls,
which will be crucial in our future work when we look at generalized
(pre)domains.

6. Nets

We consider nets in a slightly more general sense than usual. Specifi-
cally, as we deal with non-hemimetric distances, we must also deal with
non-reflexive nets (to allow for d-Cauchy nets even when ≤d is not reflex-
ive). So by a net we mean a non-empty set indexed by a directed set Λ;
i.e., we have (possibly non-reflexive) transitive ≺ ⊆ Λ× Λ satisfying

∀γ, δ ∃λ (γ, δ ≺ λ).

As usual, we define limits by

(6.1) xλ → x ⇔ ∀ open O ∋ x ∃ γ ∈ Λ (xλ)λ≻γ ⊆ O.

In fact, these are also the limits with respect to the preorder ≼ given by

x ≼ y ⇔ (≺ x) ⊆ (≺ y)

as in (4.4). Also note that it suffices to verify (6.1) for all open O in a
subbasis S for the topology. Indeed, as nets are indexed by directed sets,
if (6.1) holds for all O ∈ S, then (6.1) holds for all finite intersections of
elements of S and, hence, for all unions of finite intersections of elements
of S, i.e., all open sets. In particular, for any topologies T and U , con-
vergence in their supremum T ∨ U(= the topology with subbasis T ∪ U)
is the same as convergence in both T and U , i.e.,

(6.2) xλ
T ∨U−−−→ x ⇔ xλ

T−→ x and xλ
U−→ x.
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Limits in [−∞,∞] are considered with respect to the usual interval
topology and limits inferior and superior are defined as usual by

lim inf
λ

rλ = lim
γ

inf
γ≺λ

rλ and

lim sup
λ

rλ = lim
γ

sup
γ≺λ

rλ.

Note that limits inferior/superior are below/above infima/suprema, i.e.,

(6.3) inf
λ

rλ ≤ lim inf
λ

rλ ≤ lim sup
λ

rλ ≤ sup
λ

rλ.

Also, (rλ) converges in [−∞,∞] if and only if

(6.4) lim sup
λ

rλ ≤ lim inf
λ

rλ,

in which case limλ rλ = lim supλ rλ = lim infλ rλ.
We also use a number of standard facts, such as

lim inf
λ

(rλ + sλ) ≥ lim inf
λ

rλ + lim inf
λ

sλ;(6.5)

lim inf
λ

(rλ + sλ) ≤ lim inf
λ

rλ + lim sup
λ

sλ ≤ lim sup
λ

(rλ + sλ);(6.6)

lim sup
λ

rλ + lim sup
λ

sλ ≥ lim sup
λ

(rλ + sλ).(6.7)

Note that these are only valid when we do not end up with ∞−∞ in the
middle, which is not a problem on [−t,∞] for any t ∈ [0,∞). Also,

lim inf
λ

(−rλ) = − lim sup
λ

rλ.

Indeed, in the finite case this follows from (6.6) by taking sλ = −rλ, while
the infinite case can be verified directly. Also, as r 7→ r+ is continuous
and (non-strictly) increasing on [−∞,∞], we have

lim inf
λ

(rλ+) = (lim inf
λ

rλ)+ and lim sup
λ

(rλ+) = (lim sup
λ

rλ)+.

For example, combining these facts yields

(6.8) lim sup
λ

((s− rλ)+) = (lim sup
λ

(s− rλ))+ = (s− lim inf
λ

rλ)+,

as long as s or lim infλ rλ is finite.
Let us adopt the convention that when nets are written on the left of

d, we take the limit superior, while on the right, we take the limit inferior:

(xλ)dx = lim sup
λ

xλdx

xd(xλ) = lim inf
γ

xdxλ.

We also extend this notation to unary functions, defining

(xλ)d = lim sup
λ

xλd and
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d(xλ) = lim inf
γ

dxλ.

(The limits here are pointwise, i.e., in the product topology of [0,∞]X .)

To avoid repetition, from now on we assume X = Y , i.e.,

We are given a set X and functions d, e ∈ [0,∞]X×X .

Proposition 6.1. For any (zλ) ⊆ X,

x(d ◦ e)y ≤ xd(zλ) + (zλ)ey.

Proof. By (6.6),

inf
z∈Z

(xdz + zey) ≤ lim inf
λ

(xdzλ + zλey) ≤ lim inf
λ

(xdzλ) + lim sup
λ

(zλey).

�

7. Cauchy Nets

Definition 7.1. For any net (xλ) ⊆ X, define

lim
γ

lim sup
δ

xγdxδ = 0 ⇔ (xλ) is d-pre-Cauchy ;(7.1)

lim
γ

sup
γ≺δ

xγdxδ = 0 ⇔ (xλ) is d-Cauchy .(7.2)

Equivalently, (xλ) is d-Cauchy if and only if

lim
γ≺δ

xγdxδ = 0

when we consider ≺ itself as a directed subset of Λ × Λ with respect to
the product ordering ≺ × ≺. These nets are “increasing modulo ϵ” in a
certain sense. More precisely, they can be characterized by <d

ϵ :

∀ϵ > 0 ∃ γ0 ∀γ ≻ γ0 ∃ δ0 ∀δ ≻ δ0 (xγ <d
ϵ xδ) ⇔ (xλ) is d-pre-Cauchy.

∀ϵ > 0 ∃ γ0 ∀γ ≻ γ0 ∀δ ≻ γ (xγ <d
ϵ xδ) ⇔ (xλ) is d-Cauchy.

In particular, if < is a transitive relation, then the <-Cauchy nets
are precisely the increasing nets, at least beyond a certain point γ0. On
the other hand, the <-pre-Cauchy nets are the “directed nets” from [8,
Definition O-1.2]. In the literature on hemimetrics, d-Cauchy nets are
more often considered than d-pre-Cauchy nets (a notable exception is
[17], where sequences that we would call pre-Cauchy/Cauchy are called
Cauchy/strongly Cauchy, respectively). However, most results on d-
Cauchy nets can be generalized to d-pre-Cauchy nets without difficulty, as
we demonstrate, and these are sometimes more convenient to work with
(e.g., it suffices to consider d-pre-Cauchy nets indexed by posets, while
with d-Cauchy nets, we must consider more general transitive relations).

On the other hand, from a metric space point of view, both (7.1) and
(7.2) extend the usual notion of a Cauchy net.
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Proposition 7.2. If d is a symmetric distance, i.e., d = dop ≤ d ◦ d,
then

(xλ) is d-Cauchy ⇔ (xλ) is d-pre-Cauchy.

Proof. The ⇒ part is immediate. Conversely, if (xλ) ⊆ X is d-pre-Cauchy
then, for every ϵ > 0, we have α and β such that, for all γ ≻ β, xαdxγ < ϵ.
Thus, for all δ ≻ γ, d = dop ≤ d◦d yields xγdxδ ≤ xαdxγ +xαdxδ < 2ϵ;
i.e., (xλ) is d-Cauchy. �

Here are a few basic but important facts about pre-Cauchy nets. Note
a version of (2) below appears in [17, Theorem 2.26].

Theorem 7.3.
(1) If (xλ) ⊆ X is d-pre-Cauchy, then (xλ) has a d-Cauchy subnet.
(2) If (xλ) ⊆ X is d-pre-Cauchy, then xλd converges (pointwise).
(3) If (xλ) ⊆ X is d-pre-Cauchy, then dxλ converges (pointwise) and

(7.3) (xλ)dy = sup
x∈X

(xdy − xd(xλ))+.

(4) If (xλ) ⊆ X is d-pre-Cauchy and d is a distance, then

(7.4) d(xλ) = d(xλ) and (xλ)d = (xλ)d.

Proof. (1) If Λ is finite, then it has a maximum γ, which means the
single element net xγ is a d-Cauchy subnet. Otherwise, let |F | denote the
cardinality of F and consider the finite subsets of Λ

F(Λ) = {F ⊆ Λ : |F | < ∞}
directed by $. We define a map f : F(Λ)\{∅} → Λ recursively as follows.
Let f({λ}) = λ, for all λ ∈ Λ. Given F ∈ F(Λ) \ {∅}, take f(F ) ∈ Λ such
that, for all E $ F , f(E) ≺ f(F ) and

xf(E)dxf(F ) ≤ lim sup
λ

xf(E)dxλ + 2−|E|.

In particular, λ ≺ f(F ) whenever λ ∈ F ̸= {λ}. This means that {f(F ) :
F ∈ F(Λ) \ {∅}} is cofinal in Λ; hence, (xf(F )) is a subnet of (xλ), which
yields the second ≤ in

lim sup
E∈F(Λ)\{∅}

sup
E$F

xf(E)dxf(F ) ≤ lim sup
E∈F(Λ)\{∅}

lim sup
λ

(xf(E)dxλ + 2−|E|)

= lim sup
E∈F(Λ)\{∅}

lim sup
λ

xf(E)dxλ

≤ lim sup
γ

lim sup
λ

xγdxλ

= 0.

Thus, (xf(F )) is a d-Cauchy subnet of (xλ).
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(2) If (xλ) is d-pre-Cauchy, then, for all y ∈ X,
lim supλ xλdy
≤ lim supλ infz∈X(xλdz + zdy) as d = d ◦ d, by 2.2,
≤ lim supλ infγ(xλdxγ + xγdy)

≤ lim supλ lim infγ(xλdxγ + xγdy) by (6.3)
≤ lim supλ(lim supγ xλdxγ + lim infγ xγdy) by (6.6)
= lim supλ lim supγ xλdxγ + lim infγ xγdy

= lim infγ xγdy as (xλ) is d-pre-Cauchy.
Thus, by (6.4), xλdy converges.

(3) If (xλ) is d-pre-Cauchy, then, for all y ∈ X,
lim supλ ydxλ

≤ infz∈X lim supλ(ydz+zdxλ) as d = d ◦ d, by Proposition 2.2,
≤ infγ lim supλ(ydxγ + xγdxλ)
≤ lim infγ lim supλ(ydxγ + xγdxλ) by (6.3)
= lim infγ(ydxγ + lim supλ xγdxλ)
≤ lim infγ ydxγ + lim supγ lim supλ xγdxλ by (6.6)
= lim infγ ydxγ as (xλ) is d-pre-Cauchy.

Thus, by (6.4), ydxλ converges.

(7.3) First, note that
supz∈X(zdy−zd(xλ))+ = supz∈X(zdy−lim infλ zdxλ)+

≤ supz∈X lim supλ(zdy−zdxλ)+ by (6.8)

(if lim infλ zdxλ < ∞; otherwise (zdy−lim infλ zdxλ)+ =
0)

≤ supz∈X lim supλ xλdy by (2.2)
= lim supλ xλdy
= (xλ)dy.

For the converse, take ϵ ∈ (0,∞) and replace the d-
pre-Cauchy net (xλ) with a subnet, if necessary, so that,
for all γ,

lim sup
λ

xγdxλ < ϵ.

Note that this suffices to prove the result for the origi-
nal net because we already know that xdxλ converges by
(3) and xλdy converges by (2) (note, applying to the
hemimetric d leaves it unchanged).

We first claim that, for all z ∈ Z,

(7.5) lim sup
γ

(zdy − zdxγ)+ = (zdy − lim inf
γ

zdxγ)+.
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If lim infγ zdxγ < ∞, then this follows from (6.8). If
lim infγ zdxγ = ∞, then, using the fact that d = d◦d by
Proposition 2.2,

∞ = lim inf
λ

zdxλ ≤ zdxγ + lim inf
λ

xγdxλ < zdxγ + ϵ

for all γ. Thus, ∞ = zdxγ for all γ, so

lim sup
γ

(zdy − zdxγ)+ = 0 = (zdy − lim inf
γ

zdxγ)+,

again proving the claim.

Now consider

(xλ)dy = lim sup
λ

sup
z∈X

(zdy − zdxλ)+.

Because zdxγ ≤ zdxλ+xλdxγ by d = d ◦d from Propo-
sition 2.2, it follows that −zdxλ ≤ −zdxγ + xλdxγ by
(1.1); hence,
(xλ)dy ≤ lim supλ supz∈X infγ(zdy + (−zdxγ + xλdxγ))+

≤ lim supλ supz∈X lim supγ(zdy + (−zdxγ + xλdxγ))+
by (6.3)

≤ lim supλ supz∈X lim supγ((zdy − zdxγ) + xλdxγ)+
as lim supγ xλdxγ < ϵ

(and a+ (−b+ c) ≤ (a− b) + c whenever c ∈ [0,∞) (see (1.2))
≤ lim supλ supz∈X lim supγ((zdy − zdxγ)+ + xλdxγ)

as (a+ b)+ ≤ a+ + b+
≤ lim supλ supz∈X(lim supγ(zdy−zdxγ)++lim supγ xλdxγ)

by (6.7)
= supz∈X lim supγ(zdy−zdxγ)++lim supλ lim supγ xλdxγ

= supz∈X lim supγ(zdy−zdxγ)+ as (xλ) is d-pre-Cauchy
= supz∈X(zdy − lim infγ zdxγ)+ by (7.5)
= supz∈X(zdy − zd(xλ))+.

(4) By (2.3), d ≤ d, so we have d(xλ) ≤ d(xλ). Conversely,

yd(xλ) = lim inf
λ

ydxλ

≤ inf
γ

lim inf
λ

(ydxγ + xγdxλ) as d = d ◦ d by Proposition 2.2

≤ lim inf
γ

lim inf
λ

(ydxγ + xγdxλ) by (6.3)

= lim inf
γ

(ydxγ + lim inf
λ

xγdxλ)

≤ lim inf
γ

ydxγ + lim sup
γ

lim sup
λ

xγdxλ by (6.6)
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= lim inf
γ

ydxγ as (xλ) is d-pre-Cauchy

= yd(xλ).

Again, by (2.3), d ≤ d, so (xλ)d ≤ (xλ)d, while conversely,

(xλ)dy = lim sup
γ

xγdy

≤ lim sup
γ

inf
λ
(xγdxλ + xλdy) as d = d ◦ d by Proposition 2.2

≤ lim sup
γ

lim sup
λ

(xγdxλ + xλdy) by (6.3)

≤ lim sup
γ

(lim sup
λ

xγdxλ + lim sup
λ

xλdy) by (6.7)

= lim sup
γ

lim sup
λ

xγdxλ + lim sup
λ

xλdy

= lim sup
λ

xλdy as (xλ) is d-pre-Cauchy

= (xλ)dy. �

8. Holes

Define the open upper/lower holes with centre c ∈ X and radius r by

c◦r = >d
r c = {x ∈ X : xdc > r} and

cr◦ = c >d
r = {x ∈ X : cdx > r}.

Note that these are defined just like open balls in (4.1) and (4.2) but
with < reversed. Let d◦, d◦, d◦

◦, d•
•, d•

◦, and d◦
• denote the topologies

generated by the corresponding balls and holes, i.e., by arbitrary unions of
finite intersections; e.g., d◦ is the topology with subbasis (xr

◦)x∈X,r∈(0,∞)

and d•
◦ = d• ∨ d◦, etc. As with balls, we could even take r ∈ [0,∞] since

x0
◦ =

∪
r∈(0,∞) x

r
◦ and ∅ = x∞

◦ . Beware that, in general, these subbases are
not bases—for hemimetric d, the balls form a basis for the ball topologies
by [9, Lemma 6.1.5], but even this can fail for more general distances.

Up until now, most of the literature has focused on ball topologies.
However, as mentioned in [9, Exercise 6.2.11], hole topologies generalize
the upper topology from order theory. This allows for simple generaliza-
tions of certain order theoretic concepts. Also, the double hole topology
d◦
◦ coincides with various kinds of weak topologies, although this, too,

does not appear to be widely recognized. For example, the double hole
topology is the usual product topology on products of bounded intervals,
the weak operator topology on projections on a Hilbert space, and the
Wijsman topology on subsets of X (see [1, examples 5 and 6 and §5.3]).

We denote convergence in d•, d◦, d•
◦, etc., by →• , →◦ , →•◦ , etc.
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Proposition 8.1. For any net (xλ) ⊆ X,

xλ →• x ⇔ (xλ)d ≤ xd;(8.1)
xλ →◦ x ⇔ d(xλ) ≥ dx.(8.2)

Proof. (8.1) Recall that for convergence it suffices to consider subbasic
open sets, in this case the balls yr• for y ∈ X and r ∈ (0,∞). So xλ →• x
means that, for all y ∈ X and r ∈ (0,∞), if x ∈ yr•, then (xλ)λ≻γ ⊆ yr•
for some γ. Thus, if xdy < r, then lim supλ xλdy ≤ r. Because r and y
were arbitrary, lim supλ xλdy ≤ xdy and hence (xλ)d ≤ xd. Conversely,
if (xλ)d ≤ xd, i.e., lim supλ xλdy ≤ xdy for all y ∈ X, then xdy < r
implies that lim supλ xλdy < r for all r ∈ (0,∞) and hence xλ →• x.

(8.2) Likewise, xλ →◦ x means that, for all y ∈ X and r ∈ (0,∞),
if x ∈ yr◦, then (xλ)λ≻γ ⊆ yr◦ for some γ. Thus, if ydx > r, then
lim infλ ydxλ ≥ r. Because r and y were arbitrary, lim infλ ydxλ ≥ ydx
and hence d(xλ) ≥ dx. Conversely, if d(xλ) ≥ dx, i.e., lim infλ ydxλ ≥
ydx for all y ∈ X, then ydx > r implies that lim infλ ydxλ > r for all
r ∈ (0,∞) and hence xλ →◦ x. �

Likewise,

xλ →• x ⇔ (xλ)d
op ≤ xdop ⇔ lim sup

λ
dxλ ≤ dx;(8.3)

xλ →◦ x ⇔ dop(xλ) ≥ dopx ⇔ lim inf
λ

xλd ≥ xd.(8.4)

Because xλ →•◦ x if and only if xλ →• x and xλ →◦ x by (6.2), and rλ → r if
and only if lim supλ rλ ≤ r ≤ lim infλ rλ, and likewise for xλ →◦• x, we have

xλ →•◦ x ⇔ lim
λ

dxλ = dx;(8.5)

xλ →◦• x ⇔ lim
λ

xλd = xd.(8.6)

In general, these convergence notions depend on all d values, not just
the small ones. In particular, without extra assumptions, they cannot be
characterized by statements like xλdx → 0, familiar from metric space
theory. However, there are still some general relationships of this sort.

Proposition 8.2.

xλdx → 0 ⇒ xλ →◦ x.(8.7)

xλdx → 0 ⇒ xλ →• x.(8.8)

xλdx → 0 ⇐ xλ →• x ≤d x.(8.9)

xλd
∨x → 0 ⇒ xλ →•◦ x.(8.10)
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Proof. Recall from Proposition 2.2 that d = d ◦ d = d ◦ d.

(8.7) If xλdx → 0, then cdx ≤ lim infλ(cdxλ + xλdx) = cd(xλ).

(8.8) If xλdx → 0, then, as d = d ◦ d yields xλdx+ xdc ≥ xλdc, (1.1)
yields xdc ≥ lim supλ(xλdc− xλdx) = (xλ)dc.

(8.9) If xλ →• x ≤d x, then lim supλ xλdx = (xλ)dx ≤ xdx = 0.

(8.10) If xλd
∨x → 0, then xλdx → 0; therefore, xλ →◦ x by (8.7), but

also xλdopx = xλd
opx → 0, so xλ →• x by (8.8). �

In [9, Definition 7.1.15], any x with (xλ)d = xd is called a d-limit of
(xλ) (these are called forward limits in [5] preceding Proposition 3.3 and
just limits in [13, Definition 11]). In general, d-limits are not true limits in
any topological sense, since they are not preserved by taking subnets. For
example, if we consider xdy = (x − y)+ on {0, 1} and take the sequence
(xn) defined by x2n = 0 and x2n+1 = 1 for all n, then (xn)d = 1d, while
(x2n)d = 0d. But for d-pre-Cauchy nets, d-limits are d◦

•-limits.

Proposition 8.3. If (xλ) is d-pre-Cauchy with subnet (yγ), then

xλ →◦• x ⇔ (xλ)d = xd ⇔ yγ →◦• x.(8.11)

If (xλ) is d-pre-Cauchy with subnet (yγ), then

xλ →•◦ x ⇔ d(xλ) = dx ⇔ yγ →•◦ x;(8.12)
xλ →•◦ x ⇒ (xλ)d = xd;(8.13)
xλ →•◦ x ⇐ (xλ)d = xd and xλ →•◦ y, for some y ∈ X.(8.14)

If (xλ) is d-pre-Cauchy and d is a distance, then

xλ →◦ x ⇔ xλdx → 0;(8.15)

xλ →◦◦ x ⇔ xλ →◦• x ≤d x.(8.16)

Proof. (8.11) If xλ →◦• x, i.e., limλ xλd = xd (see (8.6)), then certainly
lim supλ xλd = xd, i.e., (xλ)d = xd. Conversely, if lim supλ xλd = xd,
then limλ xλd = xd, since xλd converges by Theorem 7.3(2). Like-
wise, because xλd converges, limλ xλd = lim yγd for any subnet (yγ),
so limλ xλd = xd if and only if limγ yγd = xd.

(8.12) Apply Theorem 7.3(3) as above.

(8.13) By (7.3) and (8.12),

(xλ)dy = sup
z∈X

(zdy − zd(xλ))+ = sup
z∈X

(zdy − zdx)+ = xdy.

(8.14) Because (xλ)dx = xdx = 0, (8.7) yields xλ →◦ x. On the other
hand, xdy = (xλ)dy = ydy = 0, where the second equality follows (8.13)
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and the xλ →•◦ y assumption. Because d ≤ d ◦ d, it follows that dy ≤
dx+ xdy = dx. Then (xλ)d

op = d(xλ) = dy ≤ dx = xdop; i.e., xλ →• x,
where the first and second equalities follow from (8.5).

(8.15) By (7.4), (xλ)d = (xλ)d. Thus, it suffices to prove

xλ →◦ x ⇔ xλdx → 0

for d-pre-Cauchy (xλ). The ⇐ part is (8.7). Conversely, (7.3) yields

(xλ)dx = sup
z∈X

(zdx− zd(xλ))+ ≤ sup
z∈X

(zdx− zdx)+ = 0,

where the inequality follows from xλ →◦ x and (8.2).
(8.16) If xλ →◦◦ x, then xλdx → 0 by (8.15); so xdx ≤ (xλ)dx = 0, i.e.,

x ≤d x. Also, xλdx ≤ xλdx → 0, since d ≤ d by (2.3), so xλ →• x by
(8.8). This proves ⇒, while (8.9) and (8.15) prove ⇐. �

For hemimetric d, (8.8) and (8.9) show that d•-convergence is equiva-
lent to the statement xλdx → 0, familiar from metric space theory. But
for general distance d, it is rather d◦-convergence that is characterized
by xλdx → 0, at least for d-pre-Cauchy nets by (8.15).

Also note that (8.13) and (8.14) describe a close relationship between
d•
◦-limits and d◦

◦-limits of d-pre-Cauchy (xλ) (as (8.11) and (8.16) show
x = d◦

◦-limxλ if and only if (xλ)d = xd). Namely, every d•
◦-limit of a

d-pre-Cauchy net (xλ) is a d◦
◦-limit by (8.13), while, conversely, the mere

existence of a d•
◦-limit guarantees that any d◦

◦-limit is a d•
◦-limit by (8.14).

For a simple example of a d-Cauchy net where xλ →◦• x �d x and hence
xλ ↛◦◦ x, take any xλ → 0 < x in [0,∞], taking ydz = z for d.

9. Directed Subsets

Directed subsets play a fundamental role in domain theory. These
correspond to increasing nets which are generalized by the (pre-)Cauchy-
nets above, and this is usually considered the only path to quantitative
domain theory. However, an equally valid, but subtly different theory can
be obtained from a more direct generalization of directed subsets.

Definition 9.1. We call Y ⊆ X d-directed if, for all finite F ⊆ Y ,

inf
y∈Y

sup
x∈F

xdy = 0.

Equivalently, Y is d-directed if and only if

∀ϵ > 0 ∀F ∈ F(Y ) ∃ y ∈ Y ∀x ∈ F (x <d
ϵ y),

where F(Y ) again denotes the finite subsets of Y . In particular, for any
transitive relation <, Y is <-directed if and only if every finite subset of
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Y has an upper bound with respect to <, i.e., if and only if Y is directed
in the usual sense.

It will also be convenient to consider the following weaker notion ob-
tained by restricting to singleton F .

Definition 9.2. We call Y ⊆ X d-final if, for all x ∈ Y ,

inf
y∈Y

xdy = 0.

Equivalently, Y is d-final if and only if

∀ϵ > 0 ∀x ∈ Y ∃ y ∈ Y (x <d
ϵ y).

In particular, for any transitive relation <, Y is <-final if and only if every
single element x has an upper bound y = x. In [12], <-final subsets are
called cofinal, while in [8, Proposition III-4.3] and [9, Proposition 5.13],
they are called rounded, at least in the ideal case. Note that arbitrary
subsets are d-final when ≤d is reflexive. In particular, arbitrary subsets
are ⊑-final when ⊑ is a preorder.

As with nets, let us adopt the convention that sets written on the
left/right of a function denote suprema/infima, so

Zdx = sup
z∈Z

zdx;

xdZ = inf
z∈Z

xdz.

Again, we extend this to unary functions, i.e.,

Zd = sup
z∈Z

zd;

dZ = inf
z∈Z

dz.

For example, applying these conventions twice, for any Y,Z ⊆ X, we have

(Y d)Z = (sup
y∈Y

yd)Z = inf
z∈Z

sup
y∈Y

ydz;

Y (dZ) = Y ( inf
z∈Z

dz) = sup
y∈Y

inf
z∈Z

ydz.

So the definition of d-directedness can thus be restated as

Y is d-directed ⇔ ∀F ∈ F(Y ) (Fd)Y = 0.

In fact, for d-directed Y , it does not matter where we put the parentheses.

Proposition 9.3. If d is a distance and Y is d-final, then

∀F ∈ F(X) (Fd)Y = F (dY ) ⇔ Y is d-directed;(9.1)

dY = dY and Y d = Y d.(9.2)
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Proof. (9.1) If Y is d-final and, for all F ∈ F(X), (Fd)Y = F (dY ),
then, in particular, for all F ∈ F(Y ), we have (Fd)Y = F (dY ) = 0; i.e.,
Y is d-directed.

For each x ∈ F , xdY ≤ (Fd)Y ; so F (dY ) ≤ (Fd)Y . Conversely, say
Y is d-directed and take ϵ > 0. For each x ∈ F , we have x′ ∈ Y with
xdx′ ≤ xdY + ϵ ≤ F (dY ) + ϵ. Then we can take y ∈ Y with F ′dy < ϵ,
where F ′ = {x′ : x ∈ F}. If d is a distance, then Fdy ≤ F (dY ) + 2ϵ.
Because ϵ > 0 was arbitrary, (Fd)Y ≤ F (dY ).

(9.2) If d is a distance, then Y d ≤ Y d by (2.3). Conversely, note first
that inf

r∈R,s∈S
(r + s) ≤ inf R+ supS for all R,S ⊆ [0,∞], so

y(d ◦ d)z ≤ inf
w∈Y

(ydw + wdz) ≤ ydY + Y dz.

So if Y is also d-final, then

Y dz ≤ Y (d ◦ d)z = sup
y∈Y

y(d ◦ d)z ≤ sup
y∈Y

(ydY + Y dz) = Y dz.

Likewise, dY ≤ dY by (2.3) and, conversely,

zdY ≤ z(d ◦ d)Y ≤ inf
x,y∈Y

(zdx+ xdy) = inf
x∈Y

(zdx+ xdY ) = zdY. �

Recall the standard topological notion of separability, namely that X is
T -separable for some topology T on X if X contains a countable T -dense
subset Y , i.e., if every non-empty O ∈ T contains some y ∈ Y .

Proposition 9.4. If d is a distance, then

X is d-final and d•-separable ⇔ X(dZ) = 0 for some countable Z.

Proof. Assume Z is d•-dense in X. If X is d-final, then, for all x ∈ X and
ϵ > 0, x•

ϵ is non-empty and hence contains some z ∈ Z; i.e., X(dZ) = 0.
If X is d•-separable, then we can choose Z to be countable, proving ⇒.

Conversely, if X(dZ) = 0, then certainly X(dX) = 0; i.e., X is d-final.
And if O = (x1)

•
ϵ1∩· · ·∩(xn)

•
ϵn is non-empty for some x1, · · · , xn ∈ X and

ϵ1, · · · , ϵn > 0, then we can take x ∈ O and ϵ > 0 such that xkdx+ ϵ < ϵk
for all k ≤ n. Since d is a distance, x•

ϵ ⊆ O. Because X(dZ) = 0, we
have some z ∈ Z with z ∈ x•

ϵ ⊆ O, so Z is indeed dense in X. �

It will be useful to define what it means for a subset to be below a net
and vice versa. Specifically, for any (xλ) ⊆ X and Y ⊆ X, let

(xλ) ≤d Y ⇔ xλdY → 0;

Y ≤d (xλ) ⇔ ydxλ → 0, for all y ∈ Y.
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Proposition 9.5. For any (xλ) ⊆ X and Y ⊆ X,

Y ≤d (xλ) ⇒ Y d ≤ (xλ)d and dY ≥ d(xλ);(9.3)

Y ≥d (xλ) ⇒ Y d ≥ (xλ)d and dY ≤ d(xλ).(9.4)

Proof. (9.3) Since d = d ◦d = d ◦d by Proposition 2.2, Y ≤d (xλ) yields

Y d = sup
y∈Y

yd ≤ sup
y∈Y

lim inf
λ

(ydxλ + xλd) ≤ (xλ)d and

d(xλ) = lim inf
λ

dxλ ≤ inf
y∈Y

lim inf
λ

(dy + ydxλ) = dY.

(9.4) Again, since d = d ◦ d = d ◦ d by Proposition 2.2, Y ≥d (xλ)
yields

(xλ)d = lim sup
λ

xλd ≤ lim sup
λ

(xλdY + Y d) = Y d and

dY = inf
y∈Y

dY ≤ lim inf
λ

inf
y∈Y

(dxλ + xλdy) = d(xλ). �

Note that if (yγ) is a subnet of (xλ), then

(xλ) ≤d Y ⇒ (yγ) ≤d Y ;

Y ≤d (xλ) ⇒ Y ≤d (yγ).

The converses also hold for pre-Cauchy nets.

Proposition 9.6. If (yγ) is a subnet of (xλ), then

(xλ) is d-pre-Cauchy and (yγ) ≤d Y ⇒ (xλ) ≤d Y ;(9.5)

(xλ) is d-pre-Cauchy and Y ≤d (yγ) ⇒ Y ≤d (xλ).(9.6)

Proof. (9.5) Assume (xλ) is d-pre-Cauchy and (yγ) ≤d Y . Then

xλdY ≤ lim sup
γ

(xλdyγ + yγdY )

= lim sup
γ

(xλdyγ) as (yγ) ≤d Y

≤ lim sup
δ

(xλdxδ) as (yγ) is a subnet

→ 0 as (xλ) is d-pre-Cauchy.

Thus, (xλ) ≤d Y .

(9.6) If (xλ) is d-pre-Cauchy, then ydxλ has a limit for any y by The-
orem 7.3(3). So if ydyγ = 0 for some subnet (yγ), this limit must be 0.
Applied to all y ∈ Y , we see that Y ≤d (yγ) implies Y ≤d (xλ). �
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Defining Y ≤d x to mean y ≤d x for all y ∈ Y , we also see that

(9.7) Y ≤d (xλ) and xλ →◦ x ⇒ Y ≤d x.

Indeed, if y ∈ Y ≤d (xλ) and xλ →◦ x, then ydx ≤ yd(xλ) = 0 by (8.2).
Different versions of quantitative domain theoretic concepts are con-

nected via results about d-directed subsets having equivalent d-pre-Cauchy
nets (and vice versa, a topic we will return to in §11). Specifically, let

Y ≡d (xλ) ⇔ Y ≤d (xλ) ≤d Y.

Proposition 9.7. For any Y ⊆ X,

there exists d-Cauchy (xλ) ≡d Y ⇐ Y is d-directed.(9.8)

If d is a distance, then

(xλ) ≡d Y ⇒ (xλ) is d-pre-Cauchy ;(9.9)

there exists (xλ) ≡d Y ⇔ Y is d-directed.(9.10)

If d is a distance and X is d
•
•-separable, then

there exists (xn)n∈N ≡d Y ⇔ Y is d-directed.(9.11)

Proof. (9.8) If Y is d-directed, then, for F ∈ F(Y ) and ϵ > 0, take
yF,ϵ ∈ Y with FdyF,ϵ < ϵ. Ordering F(Y ) × (0,∞) by ⊆ × ≥, we get
(yF,ϵ) ⊆ Y ≤d (yF,ϵ). In particular, (yF,ϵ) is d-pre-Cauchy. By Theorem
7.3(1), we can replace (yF,ϵ) with a d-Cauchy subnet. Lastly, note that
(yF,ϵ) ⊆ Y implies (yF,ϵ)(dY ) ≤ Y (dY ) = 0 because Y is d-directed and
hence d-final, i.e., (yF,ϵ) ≤d Y .

(9.9) If (xλ) ≡d Y , then, as d is a distance,

lim sup
γ

lim sup
δ

xγdxδ ≤ lim sup
γ

inf
y∈Y

lim sup
δ

(xγdy + ydxδ)

= lim sup
γ

inf
y∈Y

(xγdy + lim sup
δ

ydxδ)

= lim sup
γ

xγdY as Y ≤d (xλ)

= 0 as (xλ) ≤d Y.

(9.10) If (xλ) ≡d Y , then, for any F ∈ F(Y ),

(Fd)Y = inf
y∈Y

sup
x∈F

xdy

≤ lim inf
λ

inf
y∈Y

sup
x∈F

(xdxλ + xλdy)

= lim inf
λ

(Fdxλ + xλdY )

≤ (Fd)(xλ) + (xλ)(dY )

= 0,
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as (Fd)(xλ) = 0 because Y ≤d (xλ) and (xλ)(dY ) = 0 because (xλ) ≤d

Y . This shows Y is d-directed. The converse is (9.8).

(9.11) Assume d is a distance, X is d
•
•-separable, and Y is d-directed.

Because d is hemimetric, d
•
• = d

∨•
by [9, Proposition 6.1.19]. Also, X

is trivially d
∨
-final, so we have countable Z ⊆ X with X(d

∨
Z) = 0 by

Proposition 9.4. Let (zn)n∈N enumerate Z. (Note, we do not consider
0 to be an element of N.) For each n ∈ N, we can take y1, · · · , yn ∈ Y
with zkdyk < zkdY + 1/n for all k ≤ n. Applying Definition 9.1 to
F = {y1, · · · , yn}, we obtain xn ∈ Y with Fdxn < 1/n. As d is a distance,
this implies that zkdxn < zkdY + 2/n for all k ≤ n. For any y ∈ Y and
ϵ > 0, we have N ∈ N with y(d

∨
)zN < ϵ; hence, zNdY ≤ zNdy+ydY < ϵ,

since Y is d-final. Thus, for any n ≥ N ,

ydxn ≤ ydzN + zNdxn < ϵ+ zNdY + 2/n ≤ 2ϵ+ 2/n.

Bacause ϵ > 0 was arbitrary, ydxn → 0, so (xn) ⊆ Y ≤d (xn). This
completes the proof of ⇐, while ⇒ follows from (9.10). �

Mostly we use d-directed subsets, but they can be replaced by d-ideals.

Definition 9.8. We call I ⊆ X a d-ideal if, for all F ∈ F(X),

F ⊆ I ⇔ (Fd)I = 0.

Note that for the ⇐ part, it suffices to consider singleton F ; i.e.,

(9.12) x ∈ I ⇐ xdI = 0.

For if (Fd)I = 0, then certainly xdI = 0 for all x ∈ F , so (9.12) yields
x ∈ I for all x ∈ F and hence F ⊆ I.

Proposition 9.9. For distance d, the d
•
-closure of d-final Y ⊆ X is

(9.13) Y
•
= {x ∈ X : xdY = 0}.

If Y is d-directed, then Y
•

is the smallest d-ideal containing Y .

Proof. Assume d is a distance and xdY = 0. Then whenever we have
c1, · · · , cn ∈ X and r1, · · · , rn ∈ (0,∞) with x ∈ (c1)

•
r1 ∩ . . . ∩ (cn)

•
rn , we

can always find y ∈ Y with xdy < (r1 − c1dx) ∧ . . . ∧ (r1 − c1dx), since
xdY = 0. It follows that y ∈ (c1)

•
r1 ∩ . . . ∩ (cn)

•
rn , since d is a distance.

Thus, x ∈ Y
•
(= the d•-closure of Y ). Conversely, if ≤d is reflexive and

xdY > ϵ > 0, then x•
ϵ ∩ Y = ∅ while x ∈ x•

ϵ , i.e., x /∈ Y
•
. Thus, if d is a

hemimetric, then
Y

•
= {x ∈ X : xdY = 0}.
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If d is a distance and Y is d-final, then (9.2) and the above argument
applied to the hemimetric d show the d-closure Y

•
is given by (9.13):

Y
•
= {x ∈ X : xdY = 0} = {x ∈ X : xdY = 0}.

It follows that any d-ideal I containing Y contains Y
•
, for if 0 = xdY ≥

xdI, then x ∈ I by (9.12). But if Y is d-directed, then, by (9.1),

F ⊆ Y
• ⇔ F (dY ) = (Fd)Y = 0 ⇔ (Fd)Y

•
= 0.

For the last ⇔, note that (Fd)Y
• ≤ (Fd)Y since Y ⊆ Y

•
, and, con-

versely, by (9.13),

(Fd)Y = inf
y∈Y

Fdy ≤ inf
y∈Y,z∈Y

•
(Fdz+zdy) = inf

z∈Y
•
(Fdz+zdY ) = (Fd)Y

•
.

Thus, Y
•

itself is a d-ideal. �

Proposition 9.10. If I is d-ideal, then I is d-directed and d
•
-closed. If

d is a distance, any d-directed d
•
-closed I ⊆ X is a d-ideal.

Proof. If I is d-ideal, then certainly I is d-directed. In particular, I is
d-final, so dI ≤ dI follows as in the proof of (9.2):

zdI ≤ z(d ◦ d)I ≤ inf
x,y∈I

(zdx+ xdy) = inf
x∈I

(zdx+ xdI) = zdI.

So if x is in the d
•
-closure of I, then xdI ≤ xdI = 0 by (9.13) (with d

replacing d). Thus, x ∈ I by the definition of d-ideal; i.e., I is d
•
-closed.

Conversely, assume d is a distance and I is d-directed and d
•
-closed.

In particular, the ⇒ part of Definition 9.8 holds, since I is d-directed.
Also, any x with xdI = 0 is in I by (9.13), since d is a distance and I is
d
•
-closed and d-final (even d-directed). This implies that the ⇐ part of

Definition 9.8 holds, too, as noted in (9.12). �

10. Upper Bounds

Next we examine “d-minimal” upper bounds of d-directed subsets.

Definition 10.1. Define d-suprema and d-maxima of Y ⊆ X by

x = d-supY ⇔ Y ≤d x and Y d ≥ xd;(10.1)

x = d-maxY ⇔ Y ≤d x and dY ≤ dx.(10.2)

Note d-suprema and d-maxima are not necessarily unique, so = here
is not really equality. Put another way, we are officially taking d-sup and
d-max as relations, not functions, and adding the = symbol simply for
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consistency with standard supremum/maximum notation. We consider d-
suprema and d-maxima analogous to d◦

◦-limits and d•
◦-limits, respectively,

as indicated by the following analog of Proposition 8.3.

Proposition 10.2. If d is a distance, then, for any Y ⊆ X,

x = d-supY ⇔ Y d = xd and x ≤d x;(10.3)
x = d-maxY ⇒ x = d-supY .(10.4)

If d is a distance and Y ⊆ X is d-final, then

x = d-maxY ⇔ dY = dx;(10.5)
x = d-maxY ⇐ x = d-supY and ∃ y = d-maxY .(10.6)

Proof. (10.3) If Y d = xd and x ≤d x, then Y dx = xdx = 0; i.e., Y ≤d x,
so x = d-supY . If Y ≤d x and xd ≤ Y d, then xdx ≤ Y dx = 0 and,
since d is a distance, Y d ≤ Y dx+ xd = xd; i.e., x ≤d x and xd = Y d.

(10.4) If dY ≤ dx, then Y d ≥ xd, since

Y dw = sup
y∈Y,z∈X

(zdw − zdy)+

= sup
z∈X

(zdw − inf
y∈Y

zdy)+

= sup
z∈X

(zdw − zdY )+

≥ sup
z∈X

(zdw − zdx)+

= xdw.

Also d ≤ d, since d is a distance; therefore, Y ≤d x implies Y ≤d x.

(10.5) If dY = dx, then, since Y is d-final, 0 = ydY = ydx for all
y ∈ Y ; i.e., Y ≤d x, so x = d-maxY . Conversely, since d is a distance,
Y ≤d x implies dx ≤ dY + Y dx = dY .

(10.6) If x = d-supY and y = d-maxY , then xdy ≤ Y dy ≤ Y dy = 0,
since d is a distance. So dY = dy ≤ dx + xdy = dx. Since Y is d-
final and Y ≤d x, Y dx ≤ Y (dY ) + Y dx = 0; i.e., Y ≤d x, too, so
x = d-maxY . �

For any < ⊆ X ×X, we see that

x = <-supY ⇔ Y ⊆ (< x) and
∩
y∈Y

(y <) ⊆ (x <);

x = <-maxY ⇔ Y ⊆ (< x) and
∪
y∈Y

(< y) ⊇ (< x).
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Thus, if ≼ is a partial order, then ≼-suprema and ≼-maxima are suprema
and maxima in the usual sense with respect to ≼. Indeed, if < is antisym-
metric and x < x = <-maxY , then, for some y ∈ Y , we have x < y < x
and hence x = y. Maxima are more interesting for non-reflexive relations,
like the way-below relation ≪ from domain theory or even just the strict
ordering < on R. Then maxima can be intuitively more like suprema;
e.g., for any Y ⊆ R,

x = <-maxY ⇔ x = ≤-supY and x /∈ Y.

We can also relate d-suprema and d-maxima to ≤d-suprema and <d-
maxima, at least under certain interpolation assumptions. One of these
involves Pd ∈ [0,∞]P(X)×X (not to be confused with dP), defined by

Y (Pd)x = Y dx = sup
y∈Y

ydx.

So Y ≤Pd x means Y dx = 0, i.e., Y ≤d x.

Proposition 10.3. For any Y ⊆ X,

x = d-supY ⇒ x = ≤d-supY .(10.7)

x = d-supY ⇐ x = ≤d-supY if ≤Pd ◦ d ≤ Pd.(10.8)

x = d-maxY ⇐ x = <d-maxY if d ◦<d ≤ d.(10.9)

If d is a distance and Y is <d-final, then

x = d-maxY ⇒ x = <d-maxY if <d ◦ ≤d ⊇ <d.(10.10)

Proof. (10.7) Multiplying xd ≤ Y d by ∞ yields (x ≤d) ⊇ (Y ≤d).

(10.8) Assume x = ≤d-supY ̸= d-supY , so Y dz < xdz for some
z ∈ X. Because (≤Pd ◦ d) ≤ Pd, we have w ∈ X such that wdz < xdz
and Y ≤d w and hence x ≤d w. Then xdz ≤ xdw + wdz < xdz, a
contradiction.

(10.9) Assume x = <d-maxY ̸= d-maxY , so zdx < zdY for some
z ∈ X. Because (d ◦ <d) ≤ d, we have w <d x with zdw < zdY . This
means that wdY ≥ zdY − zdw > 0, so, for all y ∈ Y , w �d y and hence
w ̸<d y, contradicting x = <d-maxY .

(10.10) Assume x = d-maxY . Because Y is <d-final for any y ∈ Y ,
we have z ∈ Y with y <d z ≤d x and hence y <d x by (5.3), i.e., Y <d x.
Now take z ∈ X with z <d x. We need to show that z <d y for some
y ∈ Y . Because <d ◦ ≤d ⊇ <d, we can take w ∈ X with z <d w ≤d x,
so (w <d

ϵ ) ⊆ (z ≤d) for some ϵ > 0. Because w ≤d x = d-maxY , we
have y ∈ Y such that wdy ≤ wdy < ϵ and hence z ≤d y. Because Y is
<d-final, we have y′ ∈ Y with y <d y′, so z <d y′ by Proposition 5.2. �
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11. Completeness

Next we consider generalizations of metric and directed completeness.

Definition 11.1. For any topology T on X and relation R ⊆ X×P(X),

X is d-T-complete ⇔ ∀d-Cauchy (xλ) ⊆ X ∃x ∈ X(xλ
T−→ x);

X is d-R-complete ⇔ ∀d-directed Y ⊆ X ∃xRY.

When d is clear, we simply refer to T -completeness and R-completeness.
The cases of primary interest are T = d◦

◦, d•
◦ and R = d-sup, d-max.

When d is a distance and T = d•
◦ or d◦

◦, we can replace d-Cauchy with
d-pre-Cauchy by Theorem 7.3(1) and Proposition 8.3. In the hemimetric
case, these are usually called Smyth- and Yoneda-completeness (see [9,
definitions 7.2.1 and 7.4.1, respectively]), since Proposition 8.2 and (8.15)
then show that d•-limits and d◦-limits of d-Cauchy (xλ) coincide.

Smyth-complete ⇔ d•
•-complete ⇔ d•

◦-complete
⇒ Yoneda-complete ⇔ d◦

•-complete ⇔ d◦
◦-complete.

Figure 2. Hemimetric Case

If d is a metric, then these are all equivalent to the usual notion of
metric completeness (see [9, Lemma 7.4.3].

On the other hand, for any poset (X,⊑),

directed complete ⇔ ⊑-sup-complete ⇔ ⊑◦
◦ -complete,

(where ⊑◦
◦ is topology generated by ⊑-holes (x ̸⊑) and (̸⊑ x)). If ⊑ is the

lower preorder of some transitive < on X, then, moreover,

directed complete ⇐ <-max-complete ⇔ <•
◦ -complete,

(where <•
◦ is topology generated by upper <-balls (x <) and lower <-holes

(x ̸<)). However, if d is a metric, every d-directed subset contains at most
one element, making X trivially d-sup-complete and d-max-complete. So
unlike the topological notions of completeness, the relational notions do
not generalize metric completeness. Indeed, the topological notions are
stronger (even for non-distance d), as we now show.

Proposition 11.2.

X is d◦
◦-complete ⇒ X is d-sup-complete.(11.1)

X is d•
◦-complete ⇒ X is d-max-complete.(11.2)
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Proof. Taking d-directed Y ⊆ X, we have d-Cauchy (xλ) ≡d Y by (9.8).
Note, we can take (xλ) ⊆ Y by taking Y as the ambient space X in (9.8).

(11.1) If X is d◦
◦-complete, we have x ∈ X with xλ →◦◦ x. As xλ →◦ x, (9.7)

yields Y ≤d x. Because xλ →◦ x, (8.4) and (xλ) ⊆ Y yield

xd ≤ lim inf
λ

xλd ≤ sup
y∈Y

yd = Y d.

(11.2) If X is d•
◦-complete, we have x ∈ X with xλ →•◦ x. As xλ →◦ x, (9.7)

yields Y ≤d x. Because xλ →• x, (8.3) and (xλ) ⊆ Y yield

dx ≥ lim sup
λ

dxλ ≥ inf
y∈Y

dy = dY. �

Conversely, we can derive the topological from the relational notions
under various interpolation conditions (whose naturality/applicability will
be indicated by some closely related conditions as well as examples like
C0(X)+). This was done for d◦

◦ and d-sup in [3], and here we aim to
do the same for d•

◦ and d-max. First, we use these conditions to turn
d-pre-Cauchy nets into equivalent subsets and sequences, collecting their
corollaries for completeness at the end.

Unlike much of the rest of the paper, these results have no real analogs
in either metric or order theory. Indeed, if d is a transitive relation <,
then <•

◦-completeness and <-max-completeness are automatically equiv-
alent. In this case, any <-pre-Cauchy net can be turned into an equiva-
lent <-directed subset by using Theorem 7.3(1) to obtain a <-increasing
subnet (which becomes a <-directed subset when we forget the indexing
set). On the other hand, as mentioned above, d-max-completeness holds
trivially for any metric d and will thus be no help at all in verifying d•

◦-
completeness, i.e., metric completeness. Consequently, the results below
will become either trivial or inapplicable in these classical cases.

Our first result is a converse of (9.9) based on [3, Theorem 1]. It relies
on the interpolation condition d ◦ ≤dP w dP which, in the hemimetric
case, weakens the middle condition considered in Proposition 5.5. This
condition applies to spaces of formal balls, as we discuss in our future
work, and the space C0(X)+, where again fdg = supx∈X(f(x)− g(x))+.
Indeed, (∗) applies to C0(X)+ by the comments after Corollary 5.7, so
d ◦ ≤dP w dP also applies by Proposition 5.5. However, note that d ◦
≤dP w dP does not apply to any metric space with at least two points.

Theorem 11.3. If d is a distance and d ◦ ≤dP w dP, then

(xλ) is d-pre-Cauchy ⇔ ∃ <d-directed Y ≡d (xλ).
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Proof. As lim
r→0

d◦≤dP

dP (r) = 0, we can define rn ↓ 0, i.e., a strictly decreas-
ing sequence (rn) with rn → 0, such that

d◦≤dP

dP (2rn+1) < rn.

Take d-pre-Cauchy (xλ) ⊆ X. If necessary, we can replace (xλ) with a
d-Cauchy subnet by Theorem 7.3(1), and the conclusion of the theorem
will be preserved by Proposition 9.6 (noting that, since d is a distance,
any d-pre-Cauchy net is both d-pre-Cauchy and d-pre-Cauchy by (2.3)).
Define f : F(Λ) \ {∅} → Λ (where F(Λ) denotes the finite subsets of Λ)
recursively as follows. Let f({λ}) = λ and, given F ∈ F(Λ) with |F | > 1,
take f(F ) ≻ f(E) for all E $ F , such that

sup
f(F )≺λ

xf(F )dxλ < r|F |.

Now xf(F )(d ◦ ≤dP)(xf(F ))
•
2r|F |

≤ d◦≤dP

dP (xf(F )dP(xf(F ))
•
2r|F |

)

≤ d◦≤dP

dP (2r|F |) < r|F |−1.

Thus, we have yF ≤dP (xf(F ))
•
2r|F |

, satisfying xf(F )dyF < r|F |−1. We
claim that the net (yF ) obtained in this way is <d-increasing. Indeed,
if F $ G, then we can take positive ϵ < r|G|−1 − xf(G)dyG. If y ∈ X
satisfies yGdy < ϵ, then

xf(F )dy ≤ xf(F )dxf(G)+xf(G)dyG+yGdy < r|F |+r|G|−1− ϵ+ ϵ ≤ 2r|F |.

So (yG <
d
ϵ ) ⊆ (xf(F ))

•
2r|F |

⊆ (yF ≤d), i.e., yF <d yG, proving the claim.
Thus, Y = {yF : F ∈ F(Λ)} is <d-directed. Also, F $ G implies

xf(F )dyG ≤ xf(F )dxf(G) + xf(G)dyG < 2r|F | → 0,

so (xλ) ≤d Y . And for λ ≻ f(F ), xλ ∈ (xf(F ))
•
r|F |

⊆ (xf(F ))
•
2r|F |

, so
yF ≤d xλ and hence Y ≤d (xλ). �

Next, we consider a different condition on balls leading to an interpo-
lation condition involving the function Fd defined on F(X)×X by

F (Fd)y = sup
x∈F

xdy.

So Fd is just the restriction to finite subsets of Pd from (10.8).

Proposition 11.4. Every open lower d-ball is ≤d-directed if and only if

≤Fd ◦ d ≤ Fd.

Proof. Assume every ball xr
• is ≤d-directed. Then, for all finite F ⊆ X,

x ∈ X and r > Fdx, i.e., F ⊆ xr
•, we have y ∈ xr

• with F ≤d y, so
≤Fd ◦ d ≤ Fd. Conversely, if ≤Fd ◦ d ≤ Fd and we have finite F ⊆ xr

•,
then Fdx < r, so we have y with F ≤d y and ydx < r, i.e., y ∈ xr

•. �
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Again, C0(X)+ with fdg = supx∈X(f(x)− g(x))+ satisfies this condi-
tion, while any metric space with at least two points does not. We weaken
the condition slightly and add a completeness assumption in the follow-
ing, based on [3, Theorem 2]. Note that the result is immediate when d is
a transitive relation <, as <-max-completeness then implies that we can
set each yn to be the <-maximum of any <-increasing subnet of (xλ).

Theorem 11.5. If d is a distance, ≤Fd ◦ d ≤ Fd, and moreover, X is
≤d-(d-max)-complete, then

(xλ) is d-pre-Cauchy ⇒ ∃ d∨-Cauchy (yn) with d(xλ) = d(yn).

Proof. The basic idea of the proof will be to replace a given d-pre-Cauchy
net by one indexed by F(Λ) and then further replace this by a ≤d-
increasing net. The resulting limit will still be off the mark by a small
amount, so we actually have to consider countably many tails of F(Λ)
and replace each of the corresponding subnets by ≤d-increasing nets.

First, note that ≤Fd ◦ d ≤ Fd is equivalent to saying that

f = ≤Fd◦d
Fd ∈ [0,∞][0,∞]

is below the identity function on [0,∞]. This, in turn, is equivalent to
saying that the f -image of [0, r) is contained in [0, r) for all r ∈ (0,∞).
In fact, it suffices that there are arbitrarily small such r. So we assume
we have rn ↓ 0 with f [0, rn) ⊆ [0, rn) for all n ∈ N. Then, for each n,
we have positive rmn ↑ rn (i.e., limm rmn = rn) with f(rmn ) < rm+1

n for all
m ∈ N. Taking f(r0n) = 0 below, set

ϵmn = 1
2 (r

m
n − f(rm−1

n )).

Again, take d-pre-Cauchy (xλ) ⊆ X. Again, if necessary, we can re-
place (xλ) with a d-Cauchy net by Theorem 7.3(1), and the conclusion
of the theorem will be preserved by Theorem 7.3(3) (noting that, as d is
a distance, any d-pre-Cauchy net (xλ) is d-pre-Cauchy by (2.3), so dxλ

converges; hence, any subnet also converges to the same limit). Define
f : F(Λ) → Λ recursively, so f({λ}) = λ for all λ ∈ Λ, f(E) ≺ f(F ) for
all F ∈ F(Λ) with |F | > 1 and all E $ F , and

sup
f(F )≺λ

xf(F )dxλ < min
1≤n<|F |

ϵ|F |−n
n .

For any n ∈ N, let Λn = {F ∈ F(Λ) : |F | > n} and define (ynF )F∈Λn

recursively as follows. For |F | = n+ 1, let ynF = xf(F ), so if F $ G, then

ynFdxf(G) < ϵ1n < r1n.

For |G| = n+ 2, let Y = {ynF : F $ G and |F | = n+ 1}. Now

Y (≤Fd ◦ d)xf(G) ≤ ≤Fd◦d
Fd (Y dxf(G)) ≤ f(r1n),
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so we can take ynG with

Y ≤d ynG and ynGdxf(G) < f(r1n) + ϵ2n.

Since xf(G)dxf(H) < ϵ2n, whenever G $ H and |G| = n+ 2,

ynGdxf(H) ≤ ynGdxf(G) + xf(G)dxf(H) < f(r1n) + 2ϵ2n = r2n.

Note that we also have

xf(G)dxf(H) < ϵ2n < r2n.

Thus, if |H| = n+ 3 and Z =
∪
{{ynG, xf(G)} : G $ H and |G| = n+ 2},

Z(≤Fd ◦ d)xf(H) ≤ ≤Fd◦d
Fd (Zdxf(H)) ≤ f(r2n).

Thus, we can take ynH with Z ≤d ynH and

ynHdxf(H) < f(r2n) + ϵ3n.

Continuing in this way, we obtain ≤d-increasing (ynF ) with ynFdxf(G) < rn
and xf(F ) ≤d ynG for all F ∈ Λn and F $ G.

Because X is ≤d-d-max-complete, we can take yn = d-maxF ynF . Thus,
xf(F ) ≤d yn for all F ∈ Λn. Since (xλ) is d-Cauchy, Theorem 7.3(2)
implies that xλd converges. Because (xf(F ))F∈Λn is a subnet of (xλ), for
each n ∈ N, we have

lim
λ

xλdy
n = lim

F∈Λn

xFdy
n = 0.

Thus,
d(yn) ≤ lim inf

n
lim inf

λ
(dxλ + xλdy

n) = d(xλ).

Also, for any m,n ∈ N and all sufficiently large H, G, and F , specifically
H % G % F ∈ Λm∨n,

ymF dyn ≤ ymF dynH ≤ ymF dxf(G) < rm.

By (10.4), ym = d-supF ymF , so ymdyn ≤ limF ymF dyn ≤ rm and hence
ymd∨yn ≤ rm∧n. As rn → 0, this shows that (yn) is d∨-Cauchy. Also,
because (xλ) is d-Cauchy, dxλ converges by Theorem 7.3(3), so

d(xλ) = lim
λ

dxλ

= lim
G

dxf(G)

≤ lim inf
n

lim inf
F

lim inf
G

(dynF + ynFdxf(G))

≤ lim inf
n

(dyn + rn) by (10.2)

= d(yn). �
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Another natural interpolation condition involves the symmetrization

d∨ ◦ ≤d ≤ d.

Yet again, this is satisfied by C0(X)+ where fdg = supx∈X(f(x)−g(x))+.
More interestingly, even in non-commutative C*-algebras, we have the
weaker uniform interpolation condition d∨ ◦ ≤d w d on the positive unit
ball, where adb = ∥(a− b)+∥ (see [4, Theorem 2.6]). For the result itself,
based on [3, Theorem 3], it again suffices to consider an even weaker
condition, this time involving a modification of e ◦ ≤d, defined by

e ◦ Φd = sup
n∈N

(e ◦ nd) = sup
ϵ>0

(e ◦<d
ϵ ).

In particular, note that (e ◦ Φd) ≤ (e ◦ ≤d). Also note that when d is a
metric, Y below must be a singleton set {x} with xλ → x. In this case,
the result is really just saying that limits coincide for uniformly equivalent
metrics.

Theorem 11.6. If d and e are distances, X is e◦-complete, e ◦Φd w d,
and d,d

op w e, then

(xλ) is d-pre-Cauchy ⇔ ∃ (necessarily d-directed) Y ≡d (xλ).

Proof. Given d-pre-Cauchy (xλ), we may again take a subnet indexed by
F(Λ) if necessary and assume we have nets (sλ), (tλ) ⊆ (0,∞) such that

sup
λ≺δ

xλdxδ < sλ → 0;(11.3)

e◦Φd

d (sλ) < tλ → 0.(11.4)

For each λ, we define γn
λ and xn

λ recursively so that

xn
λdxγn

λ
+ sup

γn
λ≺δ

xγn
λ
dxδ < sγn

λ
< 21−ntλ;

e◦Φd

d (sγn
λ
) < 21−ntλ;

xn
λex

n+1
λ < 21−ntλ.

First, set γ1
λ = λ and x1

λ = xλ. For n ∈ N, take γn+1
λ ≻ γn

λ with
e◦Φd

d (sγn+1
λ

), sγn+1
λ

< 2−ntλ. As xn
λdxγn+1

λ
≤ xn

λdxγn
λ
+xγn

λ
dxγn+1

λ
< sγn

λ
,

xn
λ(e ◦ Φd)xγn+1

λ
≤ e◦Φd

d (xn
λdxγn+1

λ
) ≤ e◦Φd

d (sγn
λ
) < 21−ntλ,

so we can take xn+1
λ with xn

λex
n+1
λ < 21−ntλ and

xn+1
λ dxγn+1

λ
< sγn+1

λ
− sup

γn+1
λ ≺δ

xγn+1
λ

dxδ.

The right side above is positive by (11.3) (with γn+1
λ in place of λ). Thus,

the recursion may continue.
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For each λ, xn
λex

n+1
λ < 21−ntλ, so (xn

λ)n∈N is e-Cauchy. Because X is
e◦-complete, we have yλ ∈ X with limn x

n
λeyλ = 0 by (8.15) and hence

limn yλdx
n
λ = 0, as d

op w e. Now

lim sup
δ

yλdxδ ≤ lim inf
n

lim sup
δ

(yλdx
n
λ + xn

λdxγn
λ
+ xγn

λ
dxδ)

≤ lim inf
n

(yλdx
n
λ + sγn

λ
)

≤ lim inf
n

(yλdx
n
λ + 21−ntλ)

= 0.

So Y ≤d (xλ) for Y = {yλ : λ ∈ Λ}. As xλ = x1
λ and xn

λex
n+1
λ < 21−ntλ,

xλeyλ ≤ 2tλ → 0. Thus, xλdyλ → 0 as d w e. Now

xλdY = inf
y∈Y

xλdy

≤ lim sup
δ

xλdyδ

≤ lim sup
δ

(xλdxδ + xδdyδ)

= lim sup
δ

(xλdxδ) as xδdyδ → 0

→ 0 as (xλ) is d-pre-Cauchy.

Thus, (xλ) ≤d Y ; hence, Y is d-directed by (9.10). �

Replacing Φd with Φd, we get ≤d-directed subsets from d-pre-Cauchy
sequences (rather than d-directed subsets from d-pre-Cauchy nets). In
fact, because the subset Y is countable, it could even be replaced with a
cofinal increasing sequence. Indeed, this is how Y is constructed in the
proof, which is based on the argument given in [3, Theorem 4.5].

Theorem 11.7. If d and e are distances, X is e◦-complete, e ◦Φd w d,
and d,d

op w e, then e ◦ Φd = e ◦ ≤d and

(xn)n∈N is d-pre-Cauchy ⇔ ∃ (countable) ≤d-directed Y ≡d (xn).

Proof. First, we prove e ◦ Φd = e ◦ ≤d. For any x, y ∈ X and ϵ > 0,
take ϵn ↓ 0 with e◦Φd

d (ϵn) < 2−nϵ for all n ∈ N. Now take z1 ∈ X with
xez1 < x(e ◦ Φd)y + ϵ and z1dy < ϵ1. Thus,

z1(e ◦ Φd)y ≤ e◦Φd

d (z1dy) ≤ e◦Φd

d (ϵ1) <
1
2ϵ,

and we can take z2 ∈ X such that z1ez2 < 1
2ϵ and z2dy < ϵ2. Continuing

in this way, we obtain a sequence (zn) ⊆ X such that, for all n ∈ N,

znezn+1 ≤ 2−nϵ and zndy < ϵn → 0.
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Because e is a distance and X is e◦-complete, (8.15) yields znez → 0 for
some z ∈ X, so

xez ≤ xez1 + z1ez ≤ x(e ◦ Φd)y + 2ϵ.

Also, zdy ≤ zdzn + zndy ≤ zdzn + ϵn → 0, since d
op w e and znez → 0,

so z ≤d y. Because ϵ > 0 was arbitrary, (e ◦ ≤d) ≤ (e ◦Φd). The reverse
inequality is immediate.

Now take (smn ), (tmn ) ⊆ (0,∞) such that, for all m,n ∈ N,

smn < 2−m−n, d
e (s

m
n+1) < tmn , and e◦≤d

d (tmn ) < sm+1
n .

(Define (sm1 )m∈N first, then (tm1 )m∈N, (sm2 )m∈N, etc.; also note that the
top of d

e above is d, not d.) Take a subsequence of the given d-pre-Cauchy
(xn) with xndxn+1 < t1n for all n, and define ymn with ymn dymn+1 < tmn for
all m and n, recursively as follows. First, let y1n = xn for all n. Assume
ymn is defined for all n and fixed m. For each n, we can take ym+1

n ≤d ymn+1

with ymn eym+1
n < sm+1

n , since

ymn (e ◦ ≤d)ymn+1 ≤ e◦≤d

d (ymn dymn+1) ≤
e◦≤d

d (tmn ) < sm+1
n .

Then the recursion may continue because

ym+1
n dym+1

n+1 ≤ ym+1
n dymn+1 + ymn+1dy

m+1
n+1 = ymn+1dy

m+1
n+1

≤ d
e (y

m
n+1ey

m+1
n+1 ) ≤

d
e (s

m+1
n+1 ) < tm+1

n .

For all m,n ∈ N, ymn eym+1
n < sm+1

n < 2−m−1−n < 2−m−n, so, since X

is e◦-complete, we have yn ∈ X with limm ymn eyn = 0. Because d,d
op w e

and ym+1
n ≤d ymn+1,

yndyn+1 ≤ lim inf
m

(yndy
m+1
n + ym+1

n dymn+1 + ymn+1dyn+1) = 0;

i.e., yn ≤d yn+1, so Y = {yn : n ∈ N} is ≤d-directed. Also, again using
the fact that e is a distance, we have

xneyn ≤ lim inf
m

(xney
m
n + ymn eyn) <

∞∑
m=2

smn <
∞∑

m=2
2−m−n < 2−n → 0.

This, together with d w e and the fact that (xn) is d-pre-Cauchy, yields

xndY = inf
m

xndym ≤ lim inf
m

(xndxm + xmdym) = lim inf
m

xndxm → 0,

so (xn) ≤d Y . Likewise, using d
op w e instead and the fact that d is a

distance,

lim sup
m

yndxm ≤ lim inf
l

lim sup
m

(yndyl + yldxm)

≤ lim inf
l

lim sup
m

(yndyl + yldxl + xldxm) = 0,

so Y ≤d (xn). �
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As promised, we can now show that d•
◦-completeness follows from d-

max-completeness (or even slightly weaker notions) under various addi-
tional interpolation, completeness, and separability conditions.

Corollary 11.8. X is d•
◦-complete if d and e are distances satisfying any

of the following (d-R-T -complete means d-R-complete and T -complete).
(11.5) d ◦ ≤dP w dP and X is <d-(d-max)-complete.

(11.6) ≤Fd ◦ d ≤ Fd and X is ≤d-(d-max)-d∨
◦-complete.

(11.7) e ◦ Φd w d, d,d
op w e, and X is d-(d-max)-e◦-complete.

(11.8) e◦Φd w d, d,d
op w e, and X is ≤d-(d-max)-e◦-complete

and d
•
•-separable.

Proof. Take d-Cauchy (xλ).
(11.5) By Theorem 11.3, we have <d-directed Y such that Y ≡d (xλ);

hence, dY = d(xλ) by (2.3) and Proposition 9.5. By <d-(d-max)-
completeness and (10.5), we have x ∈ X with dx = dY = d(xλ), so
xλ →•◦ x by (8.12). Thus, X is d•

◦-complete.

(11.6) By Theorem 11.5, we have d∨-Cauchy (yn) with d(xλ) = d(yn).
By d∨

◦ -completeness and (8.15), we have x ∈ X with ynd
∨x → 0 and

hence yn →•◦ x by (8.10). Thus, dx = d(yn) = d(xλ); hence, xλ →•◦ x by
(8.12). Thus, X is d•

◦-complete.

(11.7) By Theorem 11.6, we have d-directed Y ≡d (xλ); hence, dY =
d(xλ) by (2.3) and Proposition 9.5. By d-max-completeness and (10.5),
we have x ∈ X with dx = dY = d(xλ), so xλ →•◦ x by (8.5). Thus, X is
d•
◦-complete.

(11.8) By Theorem 11.6, we have d-directed Y ≡d (xλ). By (9.11), we
have (x′

n)n∈N ≡d Y . By Theorem 11.7, we have ≤d-directed Y ′ ≡d (x′
n)

and hence dY ′ = d(xλ) by (2.3) and Proposition 9.5. By ≤d-(d-max)-
completeness, we have x ∈ X with dx = dY ′ = d(xλ), i.e., xλ →•◦ x. Thus,
X is d•

◦-complete. �
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