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ON PERIODIC DATA OF DIFFEOMORPHISMS
WITH ONE SADDLE ORBIT

T. MEDVEDEV, E. NOZDRINOVA, AND O. POCHINKA

Abstract. In this paper we find all possible periodic data for orientation
preserving gradient-like diffeomorphisms of orientable surfaces with one saddle
orbit. We also construct a system of this class for every admissible collection
of periodic data.

1. Introduction

In the study of discrete dynamical systems, i.e., the study of orbits of self-maps
f defined on a given compact manifold, the periodic behavior plays an important
role. In the last forty years there was a growing number of results showing that
certain simple hypotheses force qualitative and quantitative properties (like the set
of periods) of a system. One of the best-known results is the title of the paper
“Period three implies chaos for the interval continuous self-maps” [11]. The effect
described there was discovered by O. M. Šarkovs’kǐı in [14]. The most useful tools
for proving the existence of fixed points or, more generally, of periodic points for a
continuous self-map f of a compact manifold is the Lefschetz fixed point theorem
and its improvements (see, for instance [3] and [4]). The Lefschetz zeta-function
simplifies the study of the periodic points of f . This is a generating function for all
the Lefschetz numbers of all iterates of f .

The periodic data of diffeomorphisms with regular dynamics on surfaces were
studied by means zeta-function in a series of already classical works by such au-
thors as Paul R. Blanchard, John M. Franks, Rufus Bowen, Steve Batterson, John
Smillie, William H. Jaco, Peter B. Shalen, Carolyn C. Narasimhan, and others. A
description of periodic data of gradient-like diffeomorphisms of surfaces was given
in [1] by means of classification of periodic surface transformations obtained by
Jakob Nielsen [12].

In [8], the authors show that the study of periodic data of arbitrary Morse–Smale
diffeomorphisms on surfaces is reduced by filtration to the problem of computing
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periodic data of diffeomorphisms with a unique saddle periodic orbit. In the present
paper we solve this problem.

2. Definitions, Notation, and Main Results

Let Sg be a closed orientable surface of a genus g ≥ 0 with a metric d and let
f : Sg → Sg be an orientation preserving diffeomorphism with the finite hyperbolic
non-wandering set Ωf .

A point x ∈ Sg is said to be wandering for f if there is an open neighborhood
Ux of x such that fn(Ux) ∩ Ux = ∅ for all n ∈ N. Otherwise the point x is called
non-wandering. The set of non-wandering points of f is called the non-wandering
set denoted by Ωf .

If Ωf is finite, then every point p ∈ Ωf is periodic, its period being mp ∈ N.
A point p ∈ Ωf is hyperbolic if the absolute values of all the eigenvalues of the
Jacobian matrix

(
∂fmp

∂x

)
|p are not 1. If the absolute values of all the eigenvalues

are less (greater) than 1, then p is called a sink point (a source point). Sink and
source points are called nodes. If a hyperbolic periodic point is not a node it a
saddle point.

The hyperbolic structure of a periodic point p implies the existence of the stable
W s
p and the unstable Wu

p manifolds defined as follows:

W s
p = {x ∈ Sg : lim

k→+∞
d(fk·per(p)(x), p) = 0},

Wu
p = {x ∈ Sg : lim

k→+∞
d(f−k·per(p)(x), p) = 0}.

Stable and unstable manifolds are called invariant manifolds. A connected com-
ponent of the set Wu

p \ p (W s
p \ p) is called an unstable (stable) separatrix.

The periodic data of the periodic orbit Op of a periodic point p is the collection
of numbers (mp, qp, νp) where mp is the period of p, qp = dim Wu

p , and νp is
the orientation type of p: p = +1 (p = −1) if fmp |Wu

p
preserves (changes) the

orientation. For orientation preserving diffeomorphisms, the orientation type of all
nodes is +1, while that of saddle points may equal either +1 or −1.

Denote by G the set of diffeomorphisms f : Sg → Sg having a unique saddle
periodic orbit Oσ. Let G1 and G2 (G = G1 ∪ G2) be the sets of diffeomorphisms
whose orientation type of the saddle orbit is −1 and +1, respectively.

Theorem 2.1. (1) The non-wandering set of every diffeomorphism f ∈ G1 consists
of an unique saddle orbit, one sink orbit, and one source orbit.

(2) The non-wandering set of every diffeomorphism f ∈ G2 consists of an unique
saddle orbit and three node orbits (one sink and two source orbits or ne source and
two sink orbits).

Let Oω and Oα denote the sink and the source orbits of a diffeomorphism f ∈ G1.
If a diffeomorphism f ∈ G2, we assume that it has a unique sink orbit Oω and two
source orbits Oα1

and Oα2
(otherwise, one considers the inverse diffeomorphism

f−1).
Let f ∈ G. It is well known that the Euler characteristic for an orientable

surface is given by the formula: χ(Sg) = 2 − 2g where g is the number of handles
(see, for example, [7] and [2]). On the other hand, by [15], the manifold Sg is a
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two-dimensional cell complex
Sg =

⋃
p∈Ωf

Wu
p ,

where the number c2 of the two-dimensional cells equals the number of the source
points; the number c1 of the one-dimensional cells equals the number of the saddle
points; and the number c0 of the zero-dimensional cells equals the number of the
sink points. Thus,

(∗) c2 − c1 + c0 = 2− 2g.

Then, for f ∈ G1, we have

(∗1) mα −mσ +mω = 2− 2g,

and for f ∈ G2,

(∗2) mα1
+mα2

−mσ +mω = 2− 2g.

Let (a, b) denote the greatest common divisor of the natural numbers a and b,
and we assume (0, b) = b.

Theorem 2.2. (1) Every diffeomorphism f ∈ G1 has one of the following collec-
tions of periodic data:

(∗∗1)
• mω = 1, mσ = 2g, mα = 1, g > 0,
• mω = 1, mσ = 2g + 1, mα = 2, g ≥ 0,
• mω = 2, mσ = 2g + 1, mα = 1, g ≥ 0.

(2) Every diffeomorphism f ∈ G2 has the following periodic data,

(∗∗2)

mω = m, mσ = km,

mα1
= (k, j + 1)

(
k

(k,j+1) ,m
)
,

mα2
= (k, j)

(
k

(k,j) ,m
)
,

for some natural numbers m ∈ N, k ∈ N, and j ∈ {0, . . . , k − 1}.

Corollary 2.3. Every orientable surface of genus g admits a diffeomorphism from
the class G, for example, with periodic data mω = 2, mσ = 2g + 1, and mα = 1 in
the class G1 and with periodic data mσ = 2g + 1 and mω = mα1

= mα2
= 1 in the

class G2.

Corollary 2.4. Every diffeomorphism of G on the 2-sphere has one of the following
periodic data:

(1) mω = 1,mσ = 1,mα = 2;
(2) mω = 2,mσ = 1,mα = 1;
(3) mω = 1,mσ = mα1 = k,mα2 = 1, k ∈ N;
(4) mω = m,mσ = m,mα1 = mα2 = 1,m ∈ N.

Theorem 2.5. (1) Every collection of the type (∗∗1) can be realized by a diffeo-
morphism f ∈ G1 with the corresponding periodic data on a surface of genus g.

(2) Every triplet of natural numbers k ∈ N, m ∈ N, and j ∈ {0, . . . , k − 1} can
be realized by a diffeomorphism f ∈ G2 with periodic data of the form (∗∗2) on a
surface of genus

g = 1 +
1

2

(
(k − 1)m− (k, j + 1)

(
k

(k, j + 1)
,m

)
− (k, j)

(
k

(k, j)
,m

))
.
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3. Illustrations

3.1. Illustrations for Theorem 2.2.

1. f ∈ G1

• Consider the octagon shown in Figure 1. Identify the pairs of its sides
that have center points with the same notation and get the diffeomorphism
f ∈ G1 on the surface of genus two S2 with the periodic data of the first
type from (∗∗1) for g = 2.

Figure 1. Diffeomorphisms from G1 with mω = 1, mσ = 4, mα = 1,
and g = 2

• Consider the hexagon shown in Figure 2. Identify the pairs of its sides
that have center points with the same notation and get the diffeomorphism
f ∈ G1 on the torus S1 with the periodic data of the second type from
(∗∗1) for g = 1.

Figure 2. Diffeomorphisms from G1 with mω = 1, mσ = 3, mα = 2,
and g = 1

• Consider the two pentagons shown in Figure 3. Identify the pairs of its sides
that have center points with the same notation and get the diffeomorphism
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f ∈ G1 on the surface of genus two S2 with the periodic data of the third
type from (∗∗1) for g = 2.

Figure 3. Diffeomorphisms from G1 with mω = 2, mσ = 5, mα = 1,
and g = 2

2. f ∈ G2

• Consider the hexagon shown in Figure 4. Identify the pairs of its sides
that have center points with the same notation and get the diffeomorphism
f ∈ G2 on the sphere with the periodic data (∗∗2).

Figure 4. Diffeomorphisms from G2 with mω = 1, mσ = 3, mα1 = 1,
mα2 = 3, and g = 0

3.2. Illustrations for Corollary 2.3.

• Consider the two polygons shown in Figure 3. Identify the pairs of its sides
that have center points with the same notation and get the closed surface
and the diffeomorphism f ∈ G1.
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• Consider the polygon shown in Figure 5. Identify the pairs of its sides that
have center points with the same notation and get the closed surface and
the diffeomorphism f ∈ G2 .

Figure 5. Diffeomorphisms from G2 with mσ = 3, mω = mα1 =
mα2 = 1, and g = 1

3.3. Illustrations for Corollary 2.4.

(1) Figure 6(A) shows a diffeomorphism f ∈ G1 on the sphere with periodic
data mω = 1,mσ = 1,mα = 2;

(2) Figure 6(B) shows a diffeomorphism f ∈ G1 on the sphere with periodic
data mω = 2,mσ = 1,mα = 1;

Figure 6. Diffeomorphism from G1

(3) Figure 7(A) shows a diffeomorphism f ∈ G2 on the sphere with periodic
data mω = 1,mσ = 3,mα1 = 3,mα2 = 1;

(4) Figure 7(B) shows a diffeomorphism f ∈ G2 on the sphere with periodic
data mω = 2,mσ = 2,mα1

= 1,mα2
= 1 .
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Figure 7. Diffeomorphism from G2 (A) k=3 and (B) m=2

4. The Structure of the Non-Wandering Set

In this section we prove Theorem 2.1. The detailed proofs of the auxiliary
statements can be found in [7].

Proof of Theorem 2.1. We are going to show that the non-wandering set of every
diffeomorphism f ∈ G consists of a unique saddle orbit and three node orbits (one
sink and two sources or one source and two sinks).

Let m` denote the period of the saddle separatrix `, i.e., the smallest natural
number µ such that fµ(`) = `, and denote by O` the orbit of the separatrix `. By
[7, Proposition 2.3] the closure of each unstable saddle separatrix contains a unique
sink, while the closure of each stable saddle separatrix contains a unique source.
Let an unstable separatrix `u of a saddle point σ contain the sink ω in its closure.
Let m be the period of ω. According to [13, Theorem 5.5], fm at the point ω is
locally conjugate with the linear diffeomorphism of the space R2 defined by

L(x, y) =
(x

2
,
y

2

)
.

Denote by Oω the orbit of the point ω and let Vω = W s
Oω \ Oω. Denote by

V̂ω = Vω/f the orbits space of the action of the group F = {fk, k ∈ Z} on Vω, and
denote by p

ω
: Vω → V̂ω the natural projection.

Due to [7, Proposition 2.5], the space V̂ω is diffeomorphic to the 2-torus; the
natural projection p

ω
: Vω → V̂ω is a cover that induces the epimorphism η

ω
:

π1(V̂ω) → mωZ (here, mωZ is the group of integers which are multiples to mω)

defined by the following rule. Let [ĉ] ∈ π1(V̂ω). Any lift c of the loop ĉ starting at
x ∈ Vω has the end point in fn(x) where n ∈ Z does not depend on the choice of
the lift. Therefore, ηω ([ĉ]) = n.

Define the diffeomorphisms ai : R2 → R2, i = 1, 2 by

a1(x, y) =
(
−x

2
,−2y

)
and a2(x, y) =

(x
2
, 2y
)
.

Both ai : R2 → R2(i = 1, 2) have the unique fixed saddle point at the origin O with
the stable manifoldW s

O = Ox and the unstable manifoldWu
O = Oy; α1 reverses the

orientation while α1 preserves it. The diffeomorphism fmσ in some neighborhood
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of the point σ is topologically conjugate to the diffeomorphism ai in a neighborhood
of the point O (see, for example, [13, Theorem 5.5]).

Let ˆ̀u = p
ω

(`u) and let jˆ̀u : ˆ̀u → V̂ω be the inclusion map. Due to [7,
Proposition 2.5], the set ˆ̀u is a circle smoothly embedded in V̂ω and such that
ηω (jˆ̀u∗(π1(ˆ̀u))) = m`uZ. Notice that pω (O`u) = ˆ̀u.

Figure 8 shows the torus V̂ω with the projection ˆ̀u of the separatrix `u such that
m`u
mω

= 3.

Figure 8. The projection of the saddle separatrix to the orbits
space of the sink basin homeomorphic to the torus

Let N = {(x, y) ∈ R2 : |xy| ≤ 1}. Notice that the set N is invariant with
respect to the diffeomorphism ai. The neighborhood of Nσ of the point σ of a
diffeomorphism g ∈ Gi is called linearizing if there exists a homeomorphism µσ :
Nσ → N conjugating the diffeomorphism fmσ |Nσ with the diffeomorphism ai|N .

The neighborhood NOσ =
mσ−1⋃
j=0

f j(Nσ) of the orbit Oσ =
mσ−1⋃
j=0

f j(σ) equipped

with the map µOσ which is composed of the homeomorphisms µσf−j : f j(Nσ) →
N , j = 0, . . . ,mσ − 1 is called the linearizing neighborhood of the orbit Oσ.

Due to [7, Theorem 2.2], the saddle point (orbit) of the diffeomorphism f has a
linearizing neighborhood.

Let N u = N \Ox, and let N̂ u
i = N u/ai, (i = 1, 2) denote the orbit space of the

action of the group {ani , n ∈ Z, i = 1, 2} on N u. Denote by p
N̂u
i

: N u → N̂ u
i the

natural projection and by η
N̂u
i

the map composed of non-trivial homomorphisms

from the fundamental groups of connected components of the space N̂ u
i to the

group Z.
The fundamental domain of the action of the group {an1 , n ∈ Z} on N u

1 is one
curvilinear trapezoid with equivalent points lying on the horizontal segments of
the boundary (Figure 9(a)). By identifying the horizontal boundaries of the trape-
zoid by the diffeomorphism a1, we get the manifold N̂ u

1 . Thus, the space N̂ u
1 is

homeomorphic to the 2-annulus K and η
N̂u1

(K) = 2Z.
The fundamental domain of the action of the group {an2 , n ∈ Z} on N u

2 consists
of two disjoint curvilinear trapezoids, each of which has equivalent points lying
on the horizontal segments of the boundary. In Figure 9(b) these trapezoids are
shaded. By identifying their horizontal boundaries by the diffeomorphism a2, we
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obtain the manifold N̂ u
2 . Thus, the space N̂ u

2 is homeomorphic to a pair of the
2-annuli K1 and K2, and ηN̂u2

(K1) = η
N̂u2

(K2) = Z.

Figure 9. The orbit space N̂ u
1

Let Nu
σ = Nσ\W s

σ and Ns
σ = Nσ\Wu

σ . Denote by N`u the connected component
of the set Nu

σ containing the unstable separatrix `u. Let N̂`u = p
ω

(N`u) and let
j
Nˆ̀u

: Nˆ̀u → V̂ω be the inclusion map. The set N̂`u is the smoothly embedded

annulus in V̂ω such that η
ω

(jN̂`u∗(π1(N̂`u ])) = m`uZ.
Denote by A the union of the sink points of the diffeomorphism f ∈ G. Let VA =

W s
A\A and V̂A = VA/f , and let pA : VA → V̂A be the natural projection. Similar to

the arguments above, the orbit space in the sink basin is homeomorphic to the torus
and that implies that each connected component of the set V̂A is homeomorphic
to the 2-torus and the number of the connected components coincides with the
number of the sink orbits.

Let Nu
Oσ = NOσ \W s

Oσ , N
s
Oσ = NOσ \Wu

Oσ , and N̂u
Oσ = Nu

Oσ/f . Due to [7,
Theorem 2.4], if f ∈ G1, then the set N̂u

Oσ is the annulus smoothly embedded into
V̂A, while if f ∈ G2, then N̂u

Oσ is two smoothly embedded into V̂A. According to
[7, Corollary 2.1], the set V̂A is not empty, and due to [7, Corollary 2.2], each torus
in V̂A contains at least one annulus of N̂u

Oσ .
Similar statements can be formulated for the source point α and for the stable

separatrix `s of the saddle point σ such that `s ⊂Wu
α .

Denote by R the union of the source points of the diffeomorphism f ∈ G. Let
VR = Wu

R \ R and V̂R = VR/f , and let p
R

: VR → V̂R be the natural projection.
Similar to the previous arguments, the orbit space in the source basin is homeo-
morphic to the torus and that implies that each connected component of the set
V̂R is homeomorphic to the 2-torus and the number of connected components co-
incides with the number of the source orbits. On the other hand, it follows from
VR = VA \Nu

Oσ ∪N
s
Oσ (see, for instance, [7, Theorem 2.1]) that

V̂A = V̂R \ N̂u
Oσ ∪ N̂

s
Oσ .

Thus, to get the space V̂R, we have to delete N̂u
Oσ from the torus V̂A and glue the

set N̂s
Oσ to the boundary of the resulting set.

If νσ = −1, then each of the sets N̂u
Oσ and N̂s

Oσ consists of one annulus and
N̂u
Oσ is homotopically non-trivially embedded into the torus V̂ω. Then V̂ω \ N̂u

Oσ is
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an annulus. Therefore, having glued its boundary to that of the annulus N̂s
Oσ , we

again get one 2-torus. But this means that f ∈ G1 has exactly one source orbit.
If νσ = +1, then each of the sets N̂u

Oσ and N̂s
Oσ consists of two annuli. Moreover,

the annuli N̂u
Oσ are homotopically non-trivially embedded in the torus V̂A. If we

assume that V̂A consists of a unique connected component, then V̂A \ N̂u
Oσ consists

of two annuli, and gluing N̂s
Oσ to their boundaries produces two 2-tori. (See Figure

10 where the transition from the sink basins to the sources basins is illustrated for a
diffeomorphism of the 2-sphere. For convenience, in these basins, the fundamental
regions are selected after identification of their boundary circles.) This means
that there are exactly two source orbits for the diffeomorphism f ∈ G2; that is,
R = Oα1

∪ Oα2
for some periodic sources α1 and α2.

Figure 10. Regluing along annuli

If we assume that V̂A consists of two connected components, then the similar
cutting and gluing operation implies the existence of the unique source orbit in this
case. �

5. Periodic Data of a Diffeomorphism f ∈ G1

In this section we prove the first statement of Theorem 2.2; that is, we show that
a diffeomorphism f ∈ G1 has one of the following collections of the periodic data
(∗∗1):

• mω = 1, mσ = 2g, mα = 1, g > 0,
• mω = 1, mσ = 2g + 1, mα = 2, g ≥ 0,
• mω = 2, mσ = 2g + 1, mα = 1, g ≥ 0.

Proof. We treat the cases mω = 1 and mω 6= 1 separately.
Case 1. mω = 1. All the unstable separatrices of saddles (their number equals

2mσ) lie in the basin W s
ω. Let V = S1 × R+, and let Lβ =

β−1⋃
j=0

ei(
π
2−

2πj
β ) × R+ for

β ∈ N. If β = 1, then let µ = 0; otherwise, let µ ∈ {1, . . . , β − 1} be such that
(β, µ) = 1. Define the diffeomorphism φβ,µ : V → V by

φβ,µ(z, r) =
(
e−

2πµ
β iz,

r

2

)
.
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Let V̂β,µ = V/φβ,µ and let pβ,µ : V → V̂β,µ be the natural projection. By con-
struction, the set V̂β,µ is the 2-torus. Therefore, there exists a natural µ such that
(2mσ, µ) = 1, and there exists a diffeomorphism ĥω : V̂ω → V̂mσ,µ that sends the
circle ˆ̀u

σ to the circle p2mσ,µ(L2mσ ). Then there is a lifting hω : Vω → V of the
diffeomorphism ĥω that sends the separatrices Wu

Oσ \ Oσ to the collection of lines
L2mσ and conjugates the diffeomorphism f |Vω with the diffeomorphism φ2mσ,µ (see,
for example, [7] and [10]). From now on we identify the conjugated objects.

Since the period of the saddle point equals mσ and since the map φ2mσ,µ is the
rotation through the angle πµ

mσ
, the separatrices of the same saddle of f are diamet-

rically opposite. The stable manifolds of the saddles, as well as the sources, lie in
the closure of W s

ω; the surface Sg is obtained from 2mσ-gon Π by identification of
the diametrically opposite sides (see Figure 11 and Figure 12), and the diffeomor-
phism f : Sg → Sg is induced by the diffeomorphism φ2mσ,µ. According to Lemma
2.1, the diffeomorphism f has a unique source orbit Oα. In order to get its period,
we construct the 3-colored graph for f in the following way (for details, see [5] and
[6]).

We say the stable (unstable) separatrices are the s (u)-sides (shown in red (blue)
in the electronic version), and we say the segments connecting the vertices of the
polygon with its center are the t-sides (green in the electronic version). Thus, the
sides divide the polygon Π into uniform triangles. We number these triangles in
counterclockwise order.

Construct the 3-colored graph Tf for the diffeomorphism f in the following way:
(1) the vertices Tf correspond to the triangular domains in a one-to-one way;
(2) two vertices of the graph are incident to an edge of color s, t, or u if the

triangular domains corresponding to these vertices have a common s, t, or u side.
Denote by Bf the set of the vertices of Tf , denote by ∆f the set of the triangles

in the division of Π, and denote by πf : ∆f → Bf the one-to-one correspondence
between ∆f and Tf . The diffeomorphism f induces an automorphism Pf = πffπ

−1
f

on the set of vertices and edges of Tf . Moreover,
• the correspondence between the set of the sinks of f and the set of the
tu-cycles of Tf is one-to-one;

• the correspondence between the set of the saddles of f and the set of the
su-cycles of Tf is one-to-one;

• the correspondence between the set of the sources of f and the set of the
ts-cycles of Tf is one-to-one.

Thus, in order to get the period of the point α, one has to calculate the length
of an arbitrary st-cycle (all st-cycles are of the same length). Denote this length
by 2λ since it is even, then

mα =
2mσ

λ
.

The diametrically opposite sides of Π are identified; therefore, if one considers the
st-cycle starting from s-edge (01, (mσ)2), then one comes to

(mσ + 1)λ = 2γmσ

for some natural γ such that (λ, γ) = 1. If mσ is even, then mσ + 1 and 2mσ are
mutually prime; therefore, λ = 2mσ and mα = 1. If mσ is odd, then mσ+1

2 and mσ

are mutually prime; therefore, λ = mσ and mα = 2. Thus, we get the following
periodic data:
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• mω = 1, mσ = 2q, mα = 1, q ∈ N;
• mω = 1, mσ = 2q + 1, mα = 2, q ≥ 0.

It follows from (∗∗1) that q = g, and we get periodic data of the first two types.

41 

41 

42

42

51

51

52 52

61

61

62

62

71

71

72

72

Figure 11. The polygonal Π and its 3-colored graph

Figure 12. The hexagonal Π and its 3-colored graph

Case 2. mω 6= 1. In this case b > 1 separatrices lie in each basin of the sink.
Let Vm = V × Zm for m > 1 and let Lβ,m = Lβ × Zm for β ∈ N. If β = 1, then

let µ = 0; otherwise let µ ∈ {1, . . . , β − 1} be such that (β,mµ) = 1. Define the
diffeomorphism φm,β,µ : Vm → Vm by

φm,β,µ(z, r, w) = (φβ,µ(z, r), w + 1 ∼ mod m) .

Let V̂m,β,µ = Vm/φm,β,µ and let pm,β,µ : Vm → V̂m,β,µ be the natural projection.
The set V̂ lβ,µ is the 2-torus by construction. There exists a natural µ such that
(b,mωµ) = 1 and there exists a diffeomorphism ĥω : V̂ω → V̂mω,b,µ sending the circle
ˆ̀u
σ to the circle pmω,b,µ(Lmωb ). Then there exists a lift hω : Vω → V of ĥω which
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sends the separatrices Wu
Oσ \Oσ to a collection of lines Lb,mω and which conjugates

the diffeomorphism f |Vω and the diffeomorphism φmω,b,µ (see, for example, [7] and
[10]). From now on we identify the conjugated objects.

Since the period of the saddle point equals bmω
2 and since the map φmω,b,µ is

the rotation through the angle 2πµ
b , the separatrices of the same saddle point of f

lie in the basins with numbers w and w + bmω
2 for w ∈ {0, . . . ,mω − 1}. Since the

surface Sg is connected, we have
(
bmω

2 ,mω

)
= 1. Therefore, b is odd and mω = 2.

Then the surface Sg is obtained from two b-gons Π0 and Π1 by identification of the
corresponding sides (see Figure 13) and the diffeomorphism f : Sg → Sg is induced
by the diffeomorphism φ2,b,µ.

Figure 13. Two pentagons Π1 and Π2 and their 3-colored graphs

Thus, in order to get the period of the point α, one has to calculate the length
of an arbitrary st-cycle (all st-cycles are of the same length). Denote this length
by λ, then

mα =
4b

λ
.

The corresponding sides of Π0 and Π1 are identified; therefore, if one considers
the st-cycle starting from s-edge (01, 02), then one comes to λ = 4γb for some
natural γ such that (λ, γ) = 1. Therefore, λ = 4b and mα = 1.
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The Euler characteristic χ(Sg) = 2− (b) + 1 = 2− 2g; thus, b = 2g + 1, and we
have periodic data of the third type

• mω = 2, mσ = 2g + 1, mα = 1, g ≥ 0. �

6. Periodic Data of a Diffeomorphism f ∈ G2

In this section we prove Theorem 2.2.

Proof. Now we are going to show that every diffeomorphism f ∈ G2 has the fol-
lowing periodic data (∗∗2):

mω = m, mσ = km,

mα1 = (k, j + 1)
(

k
(k,j+1) ,m

)
,

mα2 = (k, j)
(

k
(k,j) ,m

)
,

where m ∈ N, k ∈ N, j ∈ {0, . . . , k − 1} are natural numbers.
Consider the following abstract model of dynamics in the basin of a periodic sink

of period m. Let m ≥ 1 be an integer and Vm = S1 × R+ × Zm. Thus, Vm is a
model for the basin of a periodic sink of period m. Let k ∈ N, τ ∈ {0, . . . , k − 1},
and

γτ1 =

k−1⋃
τ=0

eiπ( 1
2−

2τ
k ) × R+, γτ2 =

k−1⋃
τ=0

eiπ( 1
2−

2τ+1
k ) × R+,

γ1 =

k−1⋃
τ=0

γτ1 × Zm, γ2 =

k−1⋃
τ=0

γτ2 × Zm.

Here, γ1 ∪ γ2 models the saddle unstable separatrices.
Let n ≥ 0 be an integer such that if k = 1, then n = 0; otherwise, let n ∈

{1, . . . , k − 1} be such that nm and k are co-prime. Here, mk models the period
of periodic unstable separatrices in Vm, and n

k represents their “rotation number,”
i.e., how the diffeomorphism permutes these separatrices. As a local model for the
diffeomorphism on the basin, consider the contraction φm,k,n : Vm → Vm given by
the formula

φm,k,n(z, r, w) = (e−
2πn
mk iz,

r

2m
, w + 1 ∼ mod m).

Notice that V̂m,k,n = Vm/φm,k,n is a torus. Denote by pm,k,n : Vm → V̂m,k,n the
natural projection. The set γ̂i = pm,k,n(γi), i = 1, 2 is a knot on V̂m,k,n.

Consider the diffeomorphism f ∈ G2. For the sink orbit Oω, let Vω = W s
Oω \Oω.

Denote by V̂ω = Vω/f the orbit space of the action of the group F = {f i, i ∈ Z} on
Vω and denote by p

ω
: Vω → V̂ω the natural projection. The unstable separatrices

`u1 and `u2 of the saddle point σ are of period mσ and they lie in the basin Vω. Since
the group F acts transitively on the connected components of Vω (the number of
such components is m) and on the orbit of each unstable separatrix (the number of
the connected components of this orbit is mσ) in each connected component of the
set Vω, there is the same number of separatrices from this orbit. Hence, the period
mσ is a multiple of the period m.

Therefore, each connected component of Vω contains k = mσ
m separatrices from

the orbit of the separatrix `ui . Let ˆ̀u
1 = pω (`u1 ) and ˆ̀u

2 = pω (`u2 ). Then there is a
number n and a diffeomorphism ĥω : V̂ω → V̂m,k,n transforming the knots ˆ̀u

1 and
ˆ̀u
2 to the knots γ̂1 and γ̂2. Thus, there is a lift hω : Vω → Vm of ĥω which sends
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the separatrices Wu
Oσ \ Oσ to the frame of the rays γ1 ∪ γ2 and conjugates the dif-

feomorphism f |Vω with the diffeomorphism φm,k,n (see, for example, [7, Statement
10.35]). From now on we identify the conjugated objects.

The diffeomorphism f uniquely defines the parameters j ∈ {0, . . . , k − 1} and
ρ ∈ {0, . . . ,m − 1} so that both the ray γ0

1 × {0} and the ray γj2 × {ρ} belong to
the unstable manifold of the same saddle point. Moreover, due to connectivity of
the ambient surface Sg,

(ρ,m) = 1.

Since hω conjugates f to φm,k,n, the parameters j and ρ correspond to the division
of the separatrices into pairs: Two separatrices form a pair if they belong to the
unstable manifold of the same saddle; that is, the ray γτ1 × {w} has the paired ray
γ

(τ+j)∼mod k
2 × {(w + ρ) ∼ mod m}.
Indeed, j and ρ are uniquely determined by f , but the order of the separatrices

depends on hω. The numbers j′ and ρ′ for the reverse order satisfy j + j′ = k and
ρ+ ρ′ = m; therefore,

(k, j′) = (k, j) and (ρ′,m) = (ρ,m),

which shows that the periods mα1
and mα2

are independent of the order of the
separatrices.

By Theorem 2.1, the non-wandering set of the diffeomorphism f contains exactly
two source orbits Oα1 and Oα2 such that cl(`u1 ) = `u1 ∪ α1 and cl(`u2 ) = `u2 ∪ α2.
Thus,

W s
Oω = Sg \ cl(W s

Oσ ).

If we remove from our surface Sg the closures of mσ stable manifolds, then we get
m disks (the basins of the sinks). Since each stable manifold locally separates two
such discs on the supporting surface, each stable manifold has two exemplars in the
boundaries of the disks after cutting. Thus, the boundary of each disk consists of
2mσ
m = 2k stable manifolds and each disk with the boundary is a 2k-gon (see Figure

14 and Figure 15 on the left).

Figure 14. The octagon Π which is the closure of the sink basin of
the diffeomorphism f ∈ G (on the left) and the four-color graph Tf
constructed for it (on the right). Here m = 1, k = 4, n = 1, j = 1, and
ρ = 0
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Figure 15. The hexagons Π and f(Π) which are the closures of the
sink basins of the diffeomorphism f ∈ G (left) and the four-color graph
Tf (right) constructed for them. Here m = 2, k = 3, n = 1, j = 2 and
ρ = 1.

The stable separatrices are called s1- and s2-curves; the unstable separatrices
(they lie on the rays of the frames γ1 and γ2) are called u-curves frames; and the
segments connecting the vertices of the polygon with its center are called t-curves.
These (colored) curves divide each polygon into triangles with si-, t-, and u-sides.
Enumerate these triangles as shown on Figure 14 and Figure 15 on the left.

The u-sides belonging to the rays γτ1 × {w} and γ
(τ+j)∼mod k
2 × {(w + ρ) ∼

mod m} are the separatrices of the same saddle point of f . In order to get the
surface Sg from the polygons Π0, . . . ,Πm−1, we identify the pairs of those sides of
the polygons which are transversal to this pair of the separatrices.

To establish the periods of the source points, we associate a four-color graph
with the diffeomorphism f in the following way (see, for example, [5] and [6] for
details):

(1) the vertices of the graph Tf are in a one-to-one correspondence with the
triangular regions;

(2) two vertices of the graph are incident to the edge of color s1, s2, t, or u if
the triangular areas corresponding to these vertices have a common s1, s2, t, or u
side (see Figure 14 and Figure 15 on the right).
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Denote by Bf the set of the vertices of the graph Tf and by ∆f the set of the
triangles in the partition of the polygon. Denote by πf : ∆f → Bf a one-to-one
correspondence between the set of triangular domains of the diffeomorphism f and
the set of vertices of the graph Tf . The diffeomorphism f induces an automorphism
Pf = πffπ

−l
f on the set of vertices and edges of the graph Tf . Additionally,

• the set of the sink points of f is in a one-to-one correspondence with the
set of the tu-cycles of the graph Tf ;

• the set of the saddle points of f is in a one-to-one correspondence with the
set of the su-cycles of Tf ;

• the set of the source points of f is in a one-to-one correspondence with the
set of the ts-cycles of Tf .

In order to determine the period mαi of the point αi, i = 1, 2, we have to
calculate the number of sit-cycles. If each such cycle is an image of some other
such cycle by f , then all the cycles are of the same period. Hence, the length of
each such cycle is some even number (edges si and t follow one another) denoted
by 2λi. Notice that the number of si- and t-edges in all the sit-cycles equals 2km;
therefore,

mαi =
km

λi
.

Now we calculate the length of the s1t-cycle starting from the s1-edge (01, j2).
We get the following sequence of the vertices

01 → j2 → ((j + 1) ∼ modk)1 → ((2j + 1) ∼ modk)2 →
→ (2(j + 1) ∼ modk)1 → · · · → (λ1(j + 1) ∼ modk)1.

Since the sequence forms the cycle, we have

λ1(j + 1) ∼ modk = 0 and λ1ρ ∼ modm = 0

and, hence,
λ1(j + 1) = lk and λ1ρ = rm

for some natural l and r.
Let A = (k, j + 1), then k = pA and j + 1 = qA where (p, q) = 1; hence,

λ1 = lp
q = rm

ρ . As λ1 is natural and (p, q) = 1 and (ρ,m) = 1, we have l = µq

and r = νρ. Therefore, λ1 = µp = νm and (µ, ν) = 1 as λ1 is the minimal number
satisfying λ1 = µ̃p = ν̃m for some natural µ̃ and ν̃. Let B = (p,m), then p = xB
and m = yB where (x, y) = 1. Therefore, µx = νy and µ = y, ν = x, and λ1 = yp.

Thus, mα1 = km
λ1

= km
yp = pAm

yp = AB = (k, j + 1)
(

k
(k,j+1) ,m

)
.

The similar construction for α2 gives mα2
= (k, j)

(
k

(k,j) ,m
)
. By (∗2), we have

m+ (k, j + 1)
(

k
(k,j+1) ,m

)
+ (k, j)

(
k

(k,j) ,m
)
− km = 2− 2g. �

7. Diffeomorphisms of G Class on the 2-Sphere

In this section we prove Corollary 2.4; that is, we show that on the 2-sphere
there exists a diffeomorphism from G with the following periodic data:

(1) mω = 1,mσ = 1,mα = 2;
(2) mω = 2,mσ = 1,mα = 1;
(3) mω = 1,mσ = mα1

= k,mα2
= 1, k ∈ N;

(4) mω = m,mσ = m,mα1
= mα2

= 1,m ∈ N.



66 T. MEDVEDEV, E. NOZDRINOVA, AND O. POCHINKA

Proof. Due to [9], every diffeomorphism from G on the sphere has at least one fixed
point. Since (∗∗1) of Theorem 2.2 is proved, we have the complete list of periodic
data for diffeomorphisms of G1:

(1) mω = 1,mσ = 1,mα = 2;
(2) mω = 2,mσ = 1,mα = 1.
If, in (∗∗2), mω = 1 and mα1

= 1, then we have
(3) mω = 1,mσ = k,mα1 = (k, j + 1),mα2 = (k, j), k ∈ N, j ∈ {0, . . . , k − 1}.
From (∗2), it follows that (k, j+1)+(k, j) = k+1, then (k, j+1) = k, (k, j) = 1,

and therefore mω = 1,mσ = mα1
= k,mα2

= 1, k ∈ N.
(4) mω = m,mσ = km,mα1

= 1, k,m ∈ N.
From (∗2), it follows that m + 1 − km + mα2

= 2 and mα2
= 1 + m(k − 1). If

k = 1, then mα2 = 1, and we have periodic data of the fourth type.
The case k > 1 is impossible. Indeed, if k > 1, since m > 1, we have mα2 > k.

On the other hand, from (∗∗2), it follows that mα1 = (k, j + 1)
(

k
k,j+1 ,m

)
= 1;

therefore, (k, j + 1) = 1, (k,m) = 1, and mα2 = (k, j). So mα2 ≤ k, and we have a
contradiction. �

8. Realization

In this section we prove Theorem 2.5; that is, we construct a diffeomorphism of
the class G for the given periodic data. To address this problem, we define on the
unit circle D the model vector field by the following system of differential equations
in the polar coordinates (r, ϕ){

ṙ = r(r − 1),

ϕ̇ = −(ϕ− ϕ0)(ϕ− ϕ1) . . . (ϕ− ϕ2b−1)
;

here, b ∈ N, ϕ0 = π
2 , and ϕν = ϕ0 − ν πb .

Denote by χtb the flow induced by this vector field and denote by χb the diffeo-
morphism which is the time-1 map of the flow χtb. Denote by ∆ν the sector of D
such that ϕν ≤ ϕ ≤ ϕν+1 where ϕ2b = −3π/2. Denote by Aν the point with the
polar coordinates r = 1 and ϕ = ϕν (see Figure 16).

8.1. Realization of diffeomorphisms of the class G1.

To realize a diffeomorphism with periodic data mω = 1, mσ = 2g, mα = 1,
and g > 0, or mω = 1, mσ = 2g + 1, mα = 2, and g ≥ 0, let b = 2mσ. Define
the diffeomorphism f̄ : D → D by f̄(d) = ei

π
mσ · χ2mσ (d). In order to obtain the

surface Sg of genus g = mσ/2 from the disk D, we identify the arcs on ∂D by the
diffeomorphisms

Ψµ(1, ϕ) = (1, ϕ2µ+1 + ϕ2µ−1 − ϕ− π), ϕ ∈ [ϕ2µ+1, ϕ2µ−1]

for µ ∈ {0, . . . ,mσ − 1} where ϕ−1 = π
2 + π

2mσ
. By the construction, the diffeomor-

phism f̄ commutes with the identification; therefore, it induces the homeomorphism
f : Sg → Sg which is smooth except at the source point. Using the technique of [5],
it is possible to introduce such a local chart in a neighborhood of the source that the
surface becomes smooth and f induces the desired Morse–Smale diffeomorphism on
it.

The diffeomorphism f−1 formσ = 2g+1 realizes the periodic datamω = 2,mσ =
2g + 1,mα = 1, g ≥ 0.
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1
0

Figure 16. Trajectories of the flow χtb

8.2. Realization of diffeomorphisms of the class G2.

To realize a diffeomorphism with the periodic data mω = m, mσ = km,mα1
=

(k, j+1)
(

k
(k,j+1) ,m

)
,mα2

= (k, j)
(

k
(k,j) ,m

)
, k ∈ N, j ∈ {0, . . . , k−1}, let b = 2k.

Define the diffeomorphism f̄ : D×Zm → D×Zm by f̄(d, q) = (ei
π
k ·χ2k(d), (q+1) ∼

mod m). In order to obtain the surface Sg of genus

g = 1 +
1

2

(
(k − 1)m− (k, j + 1)

(
k

(k, j + 1)
,m

)
− (k, j)

(
k

(k, j)
,m

))
from the disks D × Zm, we identify the arcs on ∂D × Zm by the diffeomorphisms

Ψµ(1, ϕ, q) = (1, kµ(ϕ− ϕ4µ−1) + ϕ(3+4(µ+j))∼mod4k, (q + 1) ∼ mod m),

ϕ ∈ [ϕ4µ+1, ϕ4µ−1] for µ ∈ {0, . . . , k − 1}, where ϕ−1 = π
2 + π

2k and

kµ =
ϕ(1+4(µ+j))∼mod4k − ϕ(3+4(µ+j))∼mod4k

ϕ4µ+1 − ϕ4µ−1
.

By construction, the diffeomorphism f̄ commutes with the identification; therefore,
it induces the homeomorphism f : Sg → Sg which is smooth except at the source
point. Using the technique of [5], it is possible to introduce such a local chart in
a neighborhood of the source that the surface becomes smooth and f induces the
desired Morse–Smale diffeomorphism on it.
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