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SUSPENSIONS OF LOCALLY CONNECTED CURVES:
HOMOGENEITY DEGREE AND UNIQUENESS

DARIA MICHALIK

Abstract. The homogeneity degree of a space X is the number
of orbits for the action of the group of homeomorphisms of X onto
itself. We determine the homogeneity degree of the suspension over
a locally connected curve X not being a local dendrite in terms of
that of X. Using the main result of Alicia Santiago-Santos’s Degree
of homogeneity on suspensions (Topology Appl. 158 (2011), no.
16, 2125–2139) gives us a formula for the homogeneity degree of
the suspension over any locally connected curve X.

We also prove that the suspensions over locally connected curves
not being local dendrites X and Y are homeomorphic if and only
if X and Y are homeomorphic.

1. Introduction

A continuum is a nondegenerate compact connected metric space. A
curve is a one-dimensional continuum. An arc is a continuum homeo-
morphic to the interval I = [0, 1]. A simple closed curve is a continuum
homeomorphic to the unit circle S1.

Let X be a topological space. The cone of X is the quotient space
defined by

Cone(X) = X × I�{X × {1}},
and the suspension of X is the quotient space defined by

Sus(X) = X × I�{X × {0}, X × {1}}.
Let H(X) denote the group of homeomorphisms of X onto itself. An

orbit of X is an orbit under the action of H(X). Given a point x ∈ X,
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70 D. MICHALIK

we consider the following set

OX(x) = {h(x) : h ∈ H(X)}.

We call it the orbit of the point x. Let OX be the set of orbits in X. We
say that the homogeneity degree of X is n provided that X has exactly n
orbits (in symbols dH(X) = n).

The homogeneity degree has been studied recently in many papers (see,
e.g., [4]–[6] and [8]–[10]).

For every n ∈ N, let Θn denote the suspension over an n-point set. In
[11], Alicia Santiago-Santos proved the following result.

Theorem 1.1. Let X be a local dendrite.
(1) If dH(X) is infinite or X ∈ {I, S1} ∪ {Θn : n ∈ N},

then dH(Sus(X)) = dH(X).
(2) If dH(X) is finite and X /∈ {I, S1} ∪ {Θn : n ∈ N},

then dH(Sus(X)) = dH(X) + 1.

In this paper we give a formula for the homogeneity degree of the
suspension over X in terms of that of X for a locally connected curve X
not being a local dendrite.

Theorem 1.2. Let us assume that X is a locally connected curve not
being a local dendrite. If dH(X) is finite, then dH(Sus(X)) = dH(X)+ 1.
If dH(X) is infinite, then dH(X) = dH(Sus(X)).

By theorems 1.1 and 1.2, we obtain a formula for the homogeneity
degree of the suspension over X in terms of that of X for any locally
connected curve X.

In [6] and [10], the reader can find formulas for the homogeneity degree
of the cones over locally connected curves.

An important step toward proving Theorem 1.2 is Lemma 2.5, which
can be found in §2. The proof of Theorem 1.2 also involves techniques and
ideas developed in [2] and employs the notation of isotopy components.
This part of our work is contained in §3.

It is well known that cones and suspensions of non-homeomorphic
spaces can be homeomorphic. In [7], we proved that the cones over locally
connected curves not being local dendrites X and Y are homeomorphic
if and only if X and Y are homeomorphic. In this paper, we present
the analogous result for suspensions, which was already announced in [7].
Namely, we prove the following theorem.

Theorem 1.3. Let us assume that X and Y are locally connected curves
not being local dendrites. Then Sus(X) and Sus(Y ) are homeomorphic if
and only if X is homeomorphic to Y .
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Its proof can be found in §5.
The crucial step in the proof of Theorem 1.3 is the following result.

Theorem 1.4. Let C and C ′ be locally connected curves. Then C×(0, 1)
is homeomorphic to C ′ × (0, 1) if and only if C is homeomorphic to C ′.

Since, in general, the cancellation law in Cartesian products does not
hold, especially for non-compact factors, Theorem 1.4 seems to be inter-
esting. Its proof can be found in §4.

The proofs of all results presented here are similar in spirit to the proofs
in [2], [6], and [7].

2. Notation and Tools

Our terminology follows [3]. All spaces are assumed to be metric. A
dendrite is a locally connected continuum without simple closed curves.

By α(X), we denote the set of Euclidean points of X, i.e., the points
having a neighborhood homeomorphic to an Euclidean space En for some
n ∈ N. By β(X), we denote the set of semi-Euclidean points of X \α(X),
namely the points (x1, . . . , xn) ∈ En with xn ≥ 0, and γ(X) = X \
(α(X)∪β(X)). A component of α(X) is called a Euclidean component of
X.

A space M is a manifold if M is a compact and connected space such
that γ(M) = ∅.

Remark 2.1. If C is a locally connected curve, then

α(C × (−1, 1)) = α(C)× (−1, 1).

Proof. Obviously, α(C×(−1, 1)) ⊇ α(C)×(−1, 1). Hence, it is enough to
prove the converse inclusion. Let (x, y) ∈ α(C×(−1, 1)). By the definition
of α, the point (x, y) has a neighborhood in C × (−1, 1) homeomorphic
to the Euclidean 2-dimensional space. By [1, p. 275], x ∈ α(C). �

A point p ∈ X is approximately Euclidean if, for every ϵ > 0, there
exists a map f : X × I → X such that

(1) f(x, 0) = x,
(2) dist(f(x, t), x) < ϵ for every (x, t) ∈ X × I,
(3) p ∈ α(f(X × {1})),
(4) the dimension of f(X ×{1}) in the point p is equal to the dimen-

sion of X in p.
Let κ be a cardinal number. A point x ∈ X is of order less than or equal

to κ provided that x has a basis of open neighborhoods whose boundaries
have at most κ elements. The smallest cardinal number κ with the above
property is called the order of a point x in X.
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Since the property of a point being approximately Euclidean is a local
one (see [2, p. 145]), by [2, theorems 7 and 9], we obtain the following
proposition.

Proposition 2.2. Let C be a locally connected curve. A point (x, t) ∈
C × (0, 1) is approximately Euclidean in C × (0, 1) if and only if x is of
order 2 and C is locally contractible at x.

For every pair of points x and y in a locally connected curve C, we
denote by νC(x, y) the number (finite or not) of Euclidean components A
in C such that the boundary of A contains only the points x and y.

In this paper we will use the following result.

Lemma 2.3 ([2, p. 155]). Let C and C ′ be two locally connected curves
and h : β(C) ∪ γ(C) → β(C ′) ∪ γ(C ′) be a homeomorphism. Then h
can be extended to a homeomorphism between C and C ′ if and only if
νC(x, y) = νC′(h(x), h(y)) for every pair of points x, y ∈ β(C) ∪ γ(C).

Recall that an orbit in X is a set OX(x) = {h(x) : h ∈ H(X)} for
some x ∈ X. Obviously, if A ⊆ X and B ⊆ Y are orbits in X and Y ,
respectively, then A×B is contained in some orbit of X × Y .

Remark 2.4. Let (x, y) ∈ X×Y . Then OX(x)×OY (y) ⊆ OX×Y ((x, y)).

The crucial step in the proof of Theorem 1.2 is the following lemma.
The analogous result for cones can be found in [7].

Lemma 2.5. If C and C ′ are locally connected curves not being local
dendrites and h : Sus(C) → Sus(C) is a homeomorphism, then h maps
the vertices of Sus(C) onto the vertices of Sus(C ′).

Proof. Let C be a locally connected curve not being a local dendrite and
x−1 and x1 be the vertices of Sus(C). Observe that Sus(C) is locally
contractible in x−1 and in x1 but, since C is not a local dendrite, in every
neighborhood of x−1 and in every neighborhood of x1 there are the points
y−1 and y1, respectively, such that Sus(C) is not locally contractible in
y−1 and in y1. The vertices of Sus(C) are the only points of Sus(C) with
these properties. Since the vertices of Sus(C ′) are also the only points in
Sus(C ′) with these properties, every homeomorphism maps the vertices
of Sus(C) onto the vertices of Sus(C ′). �

3. Isotopic Components

A continuous map h : X × I → X is a homotopic deformation in X
if h(x, 0) = x for every x ∈ X. A map h : X × I → X is an isotopic
deformation in X if h is a homotopic deformation and the map ht(x) =
h(x, t) is a homeomorphic embedding in X for every t ∈ I. If, for every t ∈
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I, the map ht(x) = h(x, t) is a homeomorphism on X, then h : X× I → X
is an isotopic deformation on X. Two points x1 and x2 are isotopic in X
(in symbols x1 ∼ x2) if there exists an isotopic deformation h : X×I → X
on X such that h(x1, 1) = x2.

The relation of being isotopic is an equivalence relation on X (for
details see [7]). An equivalence class of the relation ∼ is called an isotopy
component of X and the equivalence class of a point x is called the isotopy
component of x. We denote it by K(x).

The idea of isotopy components comes from K. Borsuk’s paper [2],
where isotopy components are used in the proof of the decomposition
uniqueness for the products of a locally connected curve and a manifold.
Our proofs of lemmas 3.6 and 3.8 are based on Borsuk’s proofs in [2].

Below the reader can find some elementary properties of isotopy com-
ponents.

Lemma 3.1. Let X be a topological space. Then
(a) Every isotopy component of X is arcwise connected. [2, p. 151]
(b) If x ∈ X and h : X → Y is a homeomorphism, then the image of

the isotopy component of the point x is the isotopy component of
the point h(x). [7, Remark 3.4.b ]

(c) If x and y belong to the same isotopy component of X, then X is
locally homeomorphic in x and in y. [2, p. 151]

(d) Every Euclidean component of X is an isotopy component of X.
[2, p. 152]

(e) Let C be a locally connected curve. The isotopy components of
C containing at least two points are identical with the Euclidean
components of C. [2, p. 152]

(f) [7, Corollary 3.8 ] A locally connected curve C has isotopy com-
ponents

• identical to the Euclidean components,
• the individual points of β(C),
• the individual points of γ(C).

A point p ∈ X is isotopically labile if, for every ϵ > 0, there exists an
isotopic deformation h(x, t) in X satisfying the following conditions:

(1) dist(h(x, t), x) < ϵ, for every (x, t) ∈ X × I, and
(2) h(x, 1) ̸= p, for every x ∈ X.

The points which are not isotopically labile are said to be isotopically
stable.

Remark 3.2 (see [2, p. 149]). If C is a locally connected curve, then the
isotopically labile points are the same as the semi-Euclidean points.



74 D. MICHALIK

Lemma 3.3. Let C be a locally connected curve. The set of isotopically
labile points in C × (0, 1) is the same as the set β(C)× (0, 1).

Proof. Note that every point in β(C)× (0, 1) is isotopically labile.
To prove the converse implication, let p ∈ C × (0, 1) be an isotopically

labile point in C×(0, 1). First, we will prove that p ∈ C×(0, 1) ⊂ C×[0, 1]
is also an isotopically labile point in C × [0, 1]. Let us fix ϵ > 0. There
exists an isotopic deformation h : C × (0, 1) × I → C × (0, 1) such that
dist(h(x, t), x) < ϵ/2 for every (x, t) ∈ C × (0, 1) × I, and h(x, 1) ̸= p for
every x ∈ C × (0, 1). Let g : C × [0, 1] × I → C × [0, 1] be an isotopic
deformation in C × [0, 1] such that g(C × [0, 1] × {1}) ⊆ C × (0, 1) and
dist(g(x, t), x) < ϵ/2 for x ∈ C × [0, 1] and t ∈ I. One can see that
hg(x, t) : C × [0, 1]× I → C × [0, 1], defined by the formula

hg(x, t) =

{
g(x, 2t) for t ∈ [0, 1/2]
h(g(x, 1), 2t− 1) for t ∈ (1/2, 1],

is an isotopic deformation in C × [0, 1], dist(hg(x, t), x) < ϵ for (x, t) ∈
C×[0, 1]×I, and hg(x, 1) ̸= p, for x ∈ C×[0, 1]. Hence, p is an isotopically
labile point in C × [0, 1]. Recall that p ∈ C × (0, 1). By [2, Lemma 11],
p ∈ β(C)× (0, 1). �

The following result will be used in the proof of Lemma 3.6. Its state-
ment and proof are analogous to [2, Lemma 13].

Lemma 3.4. Let C be a locally connected curve. Two points (x0, y0) ∈
γ(C)× (0, 1) and (x1, y1) ∈ C× (0, 1) are isotopic in C× (0, 1) if and only
if x0 = x1.

Proof. Note that if x0 = x1, then (x0, y0) and (x1, y1) are isotopic.
Assume now that (x0, y0) ∈ γ(C) × (0, 1) and (x1, y1) ∈ C × (0, 1)

are isotopic in C × (0, 1). Hence, there exists an isotopic deformation
ϕ : C × (0, 1)× I → C × (0, 1) such that

ϕ(x, y, t) = (ϕC(x, y, t), ϕ(0,1)(x, y, t)) and

ϕ(x0, y0, 1) = (x1, y1).

Assume for a contradiction that x0 ̸= x1. Hence, x0 ̸= ϕC(x0, y0, 1) =
x1.

Observe that ϕC(x, y0, t) is a homotopic deformation in C. Since in
a locally connected curve the homotopically fixed points are the same as
the points in which the curve is not a local dendrite (see [2, p. 143]), x0

has a neighborhood U in C being a dendrite. Since the point (x0, y0) is
isotopic to the point (ϕC(x0, y0, t), ϕ(0,1)(x0, y0, t)) for every t ∈ [0, 1], the
point ϕC(x0, y0, t) belongs to γ(C) for every t ∈ [0, 1]. The set of points of
order greater than or equal to 3 of a dendrite is always finite or countable.
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Hence, there exist t1 and t2 in [0, 1] such that ϕC(x0, y0, t1) ∈ U is of
order 2 and ϕC(x0, y0, t2) ∈ U is of order greater than or equal to 3.
By Proposition 2.2, the point ϕC(x0, y0, t1) is approximately Euclidean
and the point ϕC(x0, y0, t2) is not approximately Euclidean in C × (0, 1).
Since ϕ(x0, y0, t1) and ϕ(x0, y0, t2) are isotopic, we obtain a contradiction.
Hence, x0 = x1. �

Let C be a locally connected curve where S1 ̸= C ̸= I, and let A
be the set of all Euclidean components of C. Let us observe that every
Euclidean component A of C is homeomorphic to the open interval (0, 1)
and Ā∩ γ(C) contains one or two points. Hence, there are three types of
Euclidean components of C, namely, A = A1∪A2∪A3, where the Ai are
pairwise disjoint and

(1) A ∈ A1 if Ā ∩ β(C) = ∅ and |Ā ∩ γ(C)| = 1,
(2) A ∈ A2 if Ā ∩ β(C) = ∅ and |Ā ∩ γ(C)| = 2,
(3) A ∈ A3 if Ā ∩ β(C) ̸= ∅.

Remark 3.5. Let C be a locally connected curve.
(1) If A and B are Euclidean components of C of the same type and

Ā ∩ γ(C) = B̄ ∩ γ(C), then A and B are contained in the same
orbit of C.

(2) Every Euclidean component of C is contained in some orbit of C.

Now, we will use the sets A1, A2, A3 from above to classify the isotopy
components of the product C × (−1, 1). An analogous result for the
product of a manifold and a locally connected curve can be found in [2].

Lemma 3.6. Let C be a locally connected curve where S1 ̸= C ̸= I, and

let B be the set of all isotopy components of C×(−1, 1). Then B =
5∪

i=1

Bi,

where Bi are pairwise disjoint and
1. B ∈ B1, if B = A× (−1, 1), where A ∈ A1;
2. B ∈ B2, if B = A× (−1, 1), where A ∈ A2;
3. B ∈ B3, if B = A× (−1, 1), where A ∈ A3;
4. B ∈ B4, if B = {x} × (−1, 1), where x ∈ β(C);
5. B ∈ B5, if B = {x} × (−1, 1), where x ∈ γ(C).

Before the proof of Lemma 3.6, let us introduce some notation and one
remark.

If B ∈ Bi, we say that B is an isotopy component of type i for i ∈
{1, 2, . . . , 5}. Let i ∈ {1, . . . , 5} and h : C × (−1, 1) → C ′ × (−1, 1) be
a homeomorphism such that h(B) ∈ Bi if and only if B ∈ Bi for every
isotopy component B. Then we say that h preserves type i of the isotopy
components.
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Remark 3.7. If B ∈
3∪

i=1

Bi, then B is 2-dimensional and if B ∈ B4 ∪B5,

then B is 1-dimensional.

Proof of Lemma 3.6. It is clear that, for every set B ∈
5∪

i=1

Bi, there exists

an isotopy component of C × (0, 1) containing B.

Take B ∈
3∪

i=1

Bi. By Remark 2.1, B is a Euclidean component of C ×

(0, 1). Hence, by Lemma 3.1(d), B is an isotopy component of C × (0, 1).

Take B ∈ B5. By Lemma 3.4, B is an isotopy component of C× (0, 1).
Now, observe that β(C × (0, 1)) =

∪
B∈B4

B. By lemmas 3.3 and 3.1(a),

every B ∈ B4 is an isotopy component of C × (0, 1). �

Lemma 3.8. Let C and C ′ be locally connected curves, where S1 ̸= C ̸= I

and S1 ̸= C ′ ̸= I, B =
5∪

i=1

Bi, and B′ =
5∪

i=1

B′
i defined in Lemma 3.6, are

the sets of isotopy components of C×(0, 1) and C ′×(0, 1), respectively. If
h : C × (−1, 1) → C ′ × (−1, 1) is a homeomorphism, then h maps B ∈ Bi

onto h(B) ∈ B′
i for every B ∈ Bi and i ∈ {1, 2, . . . , 5}.

Proof. By Lemma 3.1(b), if B ∈ B, then h(B) ∈ B′.
Take B ∈ B1. By the definition of B1, B = A× (−1, 1), where A ∈ A1.

Since A is a Euclidean component of C such that A∩ β(C) = ∅ and |A∩
γ(C)| = 1, A is homeomorphic to S1 and A∩C \A = {a} ⊂ γ(C). Hence,
B = A× (−1, 1) is homeomorphic to S1 × (0, 1) and B ∩ (C × (0, 1)) \B
is homeomorphic to (0, 1).

Take B ∈ B2. By the definition of B2, B = A× (−1, 1), where A ∈ A2.
Since A is a Euclidean component of C such that Ā ∩ β(C) = ∅ and
|Ā ∩ γ(C)| = 2, A is homeomorphic to [0, 1] and A ∩ C \A = {a, b} ⊂
γ(C). Hence, B = A × (−1, 1) is homeomorphic to [0, 1] × (0, 1) and
B ∩ (C × (0, 1)) \B is homeomorphic to {0, 1} × (0, 1).

Take B ∈ B3. By the definition of B3, B = A× (−1, 1), where A ∈ A3.
Since A is a Euclidean component of C such that Ā ∩ β(C) ̸= ∅, A is
homeomorphic to [0, 1], and A ∩ C \A = {a} ⊂ γ(C). Hence, B =

A × (−1, 1) is homeomorphic to [0, 1] × (0, 1) and B ∩ (C × [0, 1)) \B is
homeomorphic to (0, 1).

Since only the isotopy components from
3∪

i=1

Bi are 2-dimensional and

the above topological properties distinguish each of them, we can conclude
that h preserves type i of isotopy components for i ∈ {1, 2, 3}.
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If B ∈ B4, then B lies on the boundary of exactly one isotopy compo-
nent CB of C × (0, 1) where CB ∈ B3. Since h preserves type 3 of isotopy
components, it also preserves type 4.

Since type i of isotopy components is preserved by the homeomorphism
h for i ∈ {1, 2, 3, 4}, type 5 is preserved by h as well. �

4. Uniqueness of the Decomposition for the
Products of a Locally Connected Curve

and the Open Interval (−1, 1)

Recall that K(x) denotes the isotopy component of the point x.

Lemma 4.1. Let C and C ′ be locally connected curves and let h : C ×
(−1, 1) → C ′ × (−1, 1) be a homeomorphism. Then there exists a home-
omorphism h0 : C × {0} → C ′ × {0} such that K(h0(x, 0)) = K(h(x, 0))
for every x ∈ β(C) ∪ γ(C).

Proof. If x ∈ γ(C), then (x, 0) ∈ B = {x} × (−1, 1) ∈ B5 and h(x, 0) =
(y, t) ∈ B′ = {y} × (−1, 1) ∈ B′

5 for y ∈ γ(C ′) and t ∈ (−1, 1).
Analogously, if x ∈ β(C), then (x, 0) ∈ B = {x} × (−1, 1) ∈ B4 and

h(x, 0) = (y, t) ∈ B′ = {y} × (−1, 1) ∈ B′
4 for y ∈ β(C ′) and t ∈ (−1, 1).

Define h0 : (β(C)∪γ(C))×{0} → (β(C ′)∪γ(C ′))×{0} by the formula
h0(x, 0) = (y, 0), where y satisfies the above equations. It is clear that h0

is a homeomorphism of (β(C) ∪ γ(C)) × {0} onto (β(C ′) ∪ γ(C ′)) × {0}
and K(h0(x, 0)) = K(h(x, 0)).

Recall that νC(p, q) denotes the number of Euclidean components A
in C such that the boundary of A contains only the points p and q. Now
observe that for x, y ∈ (γ(C) ∪ β(C)) × {0}, the number νC×{0}(x, y) is
equal to the number of Euclidean components of C × (−1, 1) for which
the boundary contains both sets K(x) and K(y) and does not contain
any other sets K(z) for z ∈ (γ(C) ∪ β(C)) × {0}. The same equality
holds for νC′×{0}(x

′, y′) where x′, y′ ∈ (γ(C ′) ∪ β(C ′))× {0}. By Lemma
3.8, we obtain νC×{0}(x, y) = νC′×{0}(h0(x), h0(y)). Now, using Lemma
2.3, we can extend h0 onto C × {0}. Note that h0 satisfies the desired
conditions. �

Observe that using Lemma 4.1, we immediately obtain Theorem 1.4.

Lemma 4.2. Let C and C ′ be locally connected curves with (x, 0) ∈
C × (−1, 1) and (y, 0) ∈ C ′ × (−1, 1). If there exists a homeomorphism
h : C × (−1, 1) → C ′ × (−1, 1) such that h(x, 0) = (y, 0), then there exists
a homeomorphism h0 : C × {0} → C ′ × {0} such that h0(x, 0) = (y, 0).

Proof. Let h0 be a homeomorphism as defined in Lemma 4.1. If x ∈
β(C) ∪ γ(C), then h0(x, 0) = (y, 0).
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Assume that x ∈ α(C). Thus, x ∈ A ∈ A1 ∪ A2 ∪ A3, where Ai is the
set of Euclidean components of C of type i for i ∈ {1, 2, 3}.

If x ∈ A ∈ Ai, then (x, 0) ∈ B ∈ Bi, h(x, 0) = (y, 0) ∈ B′ ∈ B′
i, and

y ∈ A′ ∈ A′
i for i ∈ {1, 2, 3}. Moreover, h(A× (−1, 1)) = A′ × (−1, 1).

Thus, h0((Ā ∩ γ(C))× {0}) = (Ā′ ∩ γ(C))× {0} and, by Remark 3.5, we
can assume that h0(x, 0) = (y, 0). �

5. Proof of Theorem 1.3

It is clear that if X and Y are homeomorphic, then Sus(X) and Sus(Y )
are also homeomorphic.

To prove the converse implication, assume that h : Sus(X) → Sus(Y )
is a homeomorphism. By Lemma 2.5, h({x−1, x1}) = {y−1, y1} where xi

and yi, for i ∈ {−1, 1}, are the vertices of Sus(X) and Sus(Y ), respectively.
Thus, h(X×(−1, 1)) = Y ×(−1, 1). Using Theorem 1.4, we conclude that
X is homeomorphic to Y .

6. Proof of Theorem 1.2

The following proof is similar in spirit to the proofs of the main results
in [6] and [10].

Proof of Theorem 1.2. Let OX be the set of orbits in X. Let G be a
minimal subset of X such that

OX = {OX(x) : x ∈ G}.
By Remark 2.4, for every orbit OSus(X)(x, t) of Sus(X), different from

the orbit of the vertices,

OX(x)× (0, 1) ⊆ OSus(X)(x, t).

Thus, by Lemma 2.5,

OSus(X) = Ov ∪ {OSus(X)(x, 0) : x ∈ G},
where Ov is the orbit of the vertices of Sus(X).

Define a function

ν : G → {OSus(X)(x, 0) : x ∈ G}
by the formula

ν(x) = OSus(X)(x, 0).

Note that the function ν is surjective.
Let us prove that ν is one-to-one. Assume for a contradiction that

there exist x ̸= y ∈ G such that ν(x) = ν(y). By the definition of ν, there
exists a homeomorphism h : Sus(X) → Sus(X) such that h(x, 0) = (y, 0).
By Lemma 2.5, h maps the vertices of Sus(X) onto the vertices. Hence,
there exists a homeomorphism h∗ : X × (−1, 1) → X × (−1, 1) satisfying
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h∗(x, 0) = (y, 0). By Lemma 4.2, OX(x) = OX(y), and we obtain a
contradiction with the minimality of G.

Hence, if G is finite,

dH(Sus(X)) = 1 + |G| = 1 + dH(X).

If G is infinite, we easily obtain

dH(Sus(X)) = dH(X). �
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