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ON M−METRIC SPACES AND
FIXED POINT THEOREMS

SAMER ASSAF

Abstract. In this paper we make some observations concerning
M−metric spaces and point out some discrepancies in some proofs
found in the literature. To remedy this, we propose a new topolog-
ical construction and prove that it is, in fact, a generalization of a
partial metric space. Then, using this construction, we present our
main theorem, having as its corollaries the fixed point theorems
found in previous publications.

1. Introduction

In 2014, Mehdi Asadi, Erdal Karapinar, and Peyman Salimi [1] pro-
posed the M−metric, an intended generalization of a partial metric. In
their paper, the proof of Lemma 2.5 does not hold, as we demonstrate in
Example 2.4. Although it is a small lemma, its assertion was crucial to
the proof of their main theorems: Theorem 3.1 and Theorem 3.2. Our
main concern in their approach lies in the open balls they proposed. We
go more in depth on the subject in §4.

In §2, we introduce the M−metric presented in [1] and generalize it
to allow negative values. We also present examples that show why some
assumptions proposed in [1], including Lemma 2.5, are not accurate.

In §3, we present the partial metric found in [2], [6], and [7]. We also
show how to induce a partial metric from an M−metric. The purpose
of this section is to put in perspective the generalization from a partial
metric to an M−metric.
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In §4, we discuss why the proposed open balls in [1] are not optimal.
We then present an alternative definition of open balls and discuss the
resulting topology.

In §5, we use the topology presented in §4 to define limits and Cauchy-
like sequences in M−metric spaces. We then present some of their topo-
logical properties.

In §6, we present contractive criteria on functions, allowing them to
generate Cauchy-like sequences.

In §7, we discuss weak orbital continuity, non-expansiveness, and the
lower bound of a space. These properties are needed for our main theorem.

Finally, in §8, we introduce our main theorem:
Theorem 8.1. Let (X,σ) be an M−metric space with
xo ∈ X. Let f : X → X be a function such that f is
r−Cauchy at x0 with special limit a ∈ X. Further assume
at least one of the following conditions holds:
(1) f is weakly orbitally continuous at x0 and non-expansive.
(2) f is weakly orbitally continuous at x0 and (X,σ) is

bounded below by σ(f(a), f(a)).
(3) f is non-expansive and (X,σ) is bounded below by

σ(a, a).
Then a is a fixed point of f .

We then use Theorem 8.1 to present a valid proof of [1, Theorem 3.1 and
Theorem 3.2].

2. M−Metric

Definition 2.1. Consider a set X and a function σ : X ×X → R. Let

mx,y = min{σ(x, x), σ(y, y)}
and

Mx,y = min{σ(x, x), σ(y, y)}.
We say that σ is an M−metric on X if it satisfies the following axioms:

For all x, y, z ∈ X,
(σ−lbnd): mx,y ≤ σ(x, y);
(σ−sym): σ(x, y) = σ(y, x);
(σ−sep): σ(x, x) = σ(x, y) = σ(y, y) ⇐⇒ x = y;
(σ−inq): σ(x, y)−mx,y ≤ σ(x, z)−mx,z + σ(z, y)−mz,y.

It is important to notice that for all x, y ∈ X,

mx,x = Mx,x = σ(x, x).

Remark 2.2. In [1], theM−metric was restricted to having non-negative
values. In Definition 2.1, we remove that restriction to expand on the
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generalization. The reader may notice that (σ−lbnd) is redundant since
it can be obtained from (σ−inq). Nevertheless, we chose to state (σ−lbnd)
mainly because we use it often enough to warrant giving it its own name
and to be consistent with [1].

In [1, Example 1.2], the function
σ?(x, y) = σ(x, y)−mx,y for x 6= y and σ?(x, x) = 0

was proposed to be a metric. We present a counterexample below.

Example 2.3. Let σ be an M−metric on the set X = {a, b} defined as

σ(a, a) = σ(a, b) = σ(b, a) = 1 and σ(b, b) = 2.

Hence, ma,b = min{σ(a, a), σ(b, b)} = 1. Therefore,

σ?(a, b) = σ(a, b)−ma,b = 1− 1 = 0, but a 6= b.

Since σ(a, b)−ma,b = 0 with a 6= b, σ? fails to satisfy the metric separation
axiom.

One of the basic ideas behind the M−metric is (σ−lbnd). This axiom
ensures that mx,y = min{σ(x, x), σ(y, y)} is bounded above by σ(x, y).
Alternatively, Mx,y = max{σ(x, x), σ(y, y)} remains free from any re-
strictions. This idea is reinforced by (σ−inq) which cannot be used to
bound Mx,y. That is why the claim in [1, Lemma 2.5(B)],

lim
n→+∞

σ(xn, xn−1) = 0⇒ lim
n→+∞

σ(xn, xn) = 0,

is incorrect. We present the counterexample below.

Example 2.4. Consider the sequence {xn}n∈N on a set X = {a, b} such
that

xn =

{
a if n is odd
b if n is even.

Let σ be an M−metric on X defined by

σ(a, a) = σ(a, b) = σ(b, a) = 0 and σ(b, b) = 1.

For example,

σ(x1, x3) = σ(x1, x1) = σ(a, a) = 0 = σ(a, b) = σ(x1, x2) = σ(x2, x3).

On the other hand,

σ(x2, x4) = σ(x2, x2) = σ(b, b) = 1.

Therefore, for all i,

σ(xi+2, xi+1) ≤ cσ(xi+1, xi),

satisfying the requirement of [1, Lemma 2.5]. It is clear that

lim
n→+∞

σ(xn, xn−1) = 0,
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while lim
n→+∞

σ(xn, xn) does not exist, as it alternates between 0 and 1.

For [1, Lemma 2.5(D)] and the fixed point theorems presented in [1]
to hold, [1, Lemma 2.5(B)] is crucial. Therefore, the techniques used to
prove the theorems found in [1] are no longer valid.

3. Partial Metric

As mentioned in §1, the M−metric was proposed to generalize the
partial metric. In Definition 2.1, we expanded on the definition of an
M−metric space found in [1] to allow negative values. Hence, our
M−metric is a generalization of the partial metric as defined by S. J.
O’Neill in [7].

Definition 3.1. A partial metric p on a setX is a function p : X×X → R
satisfying the following axioms:

For all x, y, z ∈ X,
(p−lbnd): p(x, x) ≤ p(x, y);
(p−sym): p(x, y) = p(y, x);
(p−sep): p(x, x) = p(x, y) = p(y, y) ⇐⇒ x = y;
(p−inq): p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

Remark 3.2. Notice that (p−inq) self-regulates when x = z; i.e., for any
arbitrary function s : X ×X → R,

s(x, y) = s(x, x) + s(x, y)− s(x, x).

For examples on partial metrics, we refer the reader to [2], [3], [6], and
[7].

In [1], the authors show that any partial metric is an M−metric. An-
other approach to their proof is by using a well-known property which we
present in Lemma 3.1.

Lemma 3.1. Let (Γ,+,≤) be an ordered commutative group. Then, for
every {a, b, c} ∈ Γ,

min{c, a}+ min{c, b} ≤ c+ min{a, b} and

c+ max{a, b} ≤ max{c, a}+ max{c, b}.

Hence, for an M−metric σ on a set X, for every x, y, z ∈ X,

−σ(z, z) ≤ −mx,z −mz,y +mx,y and

−Mx,z −Mz,y +Mx,y ≤ −σ(z, z).

In Example 3.3, we slightly adapt [1, Example 1.1] to give anM−metric
that is not a partial metric.
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Example 3.3. Consider the set X = R. Let σ : X ×X → R be defined
by setting for all x, y ∈ X,

σ(x, y) = x+ y.

Then σ is an M−metric on X.

Proof. Except for (σ−inq), the proof of the other axioms is quite straight-
forward. Without loss of generality, assume x ≤ y ∈ X. Then,

mx,y = 2x and

σ(x, y)−mx,y = x+ y − 2x = y − x.
Let z ∈ X such that

Case 1. x ≤ y ≤ z. Then

[σ(x, z)−mx,z] + [σ(z, y)−mz,y]

= [z − x] + [z − y] ≥ z − x ≥ y − x = σ(x, y)−mx,y.

Case 2. x ≤ z ≤ y. Then

[σ(x, z)−mx,z] + [σ(z, y)−mz,y]

= [z − x] + [y − z] = y − x = σ(x, y)−mx,y.

Case 3. z ≤ x ≤ y. Then

[σ(x, z)−mx,z] + [σ(z, y)−mz,y]

= [x− z] + [y − z] ≥ y − z ≥ y − x = σ(x, y)−mx,y.

Clearly, if x < y ∈ X, then

2x < x+ y < 2y;

i.e., mx,y < σ(x, y) < σ(y, y).

Hence, σ is not a partial metric. �

We now show that an M−metric on a set X induces a partial metric
on X.

Theorem 3.2. Let σ be an M−metric on a set X. As in Definition 2.1,
we denoteMx,y = max{σ(x, x), σ(y, y)} andmx,y = min{σ(x, x), σ(y, y)}.
For x, y ∈ X, let

pσ(x, y) = σ(x, y) +Mx,y −mx,y.

Then pσ is a partial metric on X.



86 S. ASSAF

Proof. For all x ∈ X, pσ(x, x) = σ(x, x) +Mx,x −mx,x = σ(x, x).
(p−sym): The proof is trivial.
(p−lbnd): For all x, y ∈ X, from (σ−lbnd), we have σ(x, y)−mx,y ≥ 0.

Hence,

pσ(x, x) = σ(x, x) ≤Mx,y ≤Mx,y + σ(x, y)−mx,y = pσ(x, y).

(p−sep): Assume that pσ(x, x) = pσ(x, y) = pσ(y, y). Then
σ(x, x) = pσ(x, x) = pσ(y, y) = σ(y, y);
i.e., σ(x, x) = σ(y, y) = mx,y = Mx,y.

Therefore,
pσ(x, y) = σ(x, y) +Mx,y −mx,y = σ(x, y).

Hence, σ(x, x) = σ(x, y) = σ(y, y) and, therefore, by (σ−sep), x = y.

(p−inq): For all x, y, z ∈ X,

pσ(x, y) = [σ(x, y)−mx,y] +Mx,y;

by (σ−inq),
≤ [σ(x, z)−mx,z + σ(z, y)−mz,y] +Mx,y

= pσ(x, z) + pσ(z, y)−Mx,z −Mz,y +Mx,y;

by Lemma 3.1,
≤ pσ(x, z) + pσ(z, y)− σ(z, z)

= pσ(x, z) + pσ(z, y)− pσ(z, z). �

As shown in Example 2.3, given σ, an M−metric on a set X,

σ?(x, y) = σ(x, y)−mx,y

need not be a metric. However, we can guarantee that σ? is a metric in
the special case where σ is a partial metric.

Lemma 3.3. Let σ be a partial metric on a set X. For all x, y ∈ X, let

σ?(x, y) = σ(x, y)−mx,y.

Then σ? is a metric on X.

Proof. The major issue in Example 2.3 is the metric separation axiom.
Since σ is a partial metric, and by (p−lbnd), for all x, y ∈ X

σ(x, y)− σ(x, x) ≥ 0.

Therefore,

0 ≤ σ(x, y)− σ(x, x) ≤ σ(x, y)−mx,y = σ?(x, y).

Hence, if σ?(x, y) = 0, then σ(x, x) = σ(x, y) = σ(y, y), and by (p−sep),
x = y. The rest of the axioms are straightforward and easy to check. �



ON M−METRIC SPACES AND FIXED POINT THEOREMS 87

4. Topology

Let σ be an M−metric on a set X. For every x ∈ X and ε > 0, an
A−open ball is defined in [1] as

BAε (x) = {y ∈ X|σ?(x, y) = σ(x, y)−mx,y < ε}.
Therefore, for the special case of σ being a partial metric and from
Lemma 3.3, the A−open balls span a metric space. Moreover, in [1, The-
orem 2.1], the authors state that the topology generated by the A−open
balls is not Hausdorff. This is a faux pas since a metric is an M−metric.

On the other hand, given a partial metric p on a set X, S. G. Matthews
[6] defines the p−open ball as

Bpε (x) = {y ∈ X|p(x, y)− p(x, x) < ε}.
Matthews [6] also shows that the p−open balls span a T0 topology that
need not be T1. We will call the p−open balls the standard partial metric
balls. In [2], we show that the standard partial metric balls still work
when allowing the partial metric to have negative values, i.e., taken in
the sense of O’Neill [7].

Lemma 4.1. Let σ be a partial metric on a set X. Then TA, the topol-
ogy generated by BAε balls, is finer than Tσs , the standard partial metric
topology generated by the Bpε balls.

Proof. For all x ∈ X and for each y ∈ Bpε (x), i.e., σ(x, y) − σ(x, x) < ε,
let

δ = ε− σ(x, y) + σ(x, x) > 0.

We show that BAδ (y) ⊆ Bpε (x). If z ∈ BAδ (y), i.e., σ(y, z)−my,z < δ, and
using (p−inq) and -σ(y, y) ≤ −my,z, we get

σ(x, z)− σ(x, x) ≤ σ(x, y) + σ(y, z)− σ(y, y)− σ(x, x)

≤ σ(x, y)− σ(x, x) + σ(y, z)−my,z

< σ(x, y)− σ(x, x) + δ = ε.

And, hence, BAδ (y) ⊆ Bpε (x); i.e., TA is finer than Tσs . �

Lemma 4.1 shows why BAε (x) is not an optimal generalization of Bpε (x).
In the special case where σ is a partial metric, BAε (x) becomes a metric
ball. Hence, in that case, the topology generated by BAε (x) is much finer
than the one generated by Bpε (x).

If an M−metric theory is to be developed as a generalization of the
partial metric one, the topology proposed should not be finer than the
standard partial metric topology. The M−open balls presented below
accomplish just that. We define them and show that the collection of
M−open balls form a basis.
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Definition 4.1. Let σ be an M−metric on a set X. For every x ∈ X
and ε > 0, the M−open ball around x of radius ε is

Bσε (x) = {y ∈ X|σ(x, y) + σ(y, y)−mx,y − σ(x, x) < ε}.

Remark 4.2. We notice that σ(x, x)− σ(x, x) + σ(x, x)−mx,x = 0; i.e.,
for every ε > 0, x ∈ Bσε (x). Additionally, if for some x, y ∈ X

mx,y = σ(y, y) ≤ σ(x, y) ≤ σ(x, x),

then
σ(x, y) + σ(y, y)−mx,y − σ(x, x)

= [σ(x, y)− σ(x, x)] + [σ(y, y)−mx,y]

= σ(x, y)− σ(x, x) ≤ 0.
Hence, every M−open ball centered at x contains y.

Lemma 4.2. Let σ be an M−metric on a set X. The collection of all
M−open balls on X, Bσ = {Bσε (x)}ε>0

x∈X forms a basis on X.

Proof. For every x ∈ X and ε > 0, let y ∈ Bσε (x). Then,

σ(x, y) + σ(y, y)−mx,y − σ(x, x) < ε.

Take
(?) δ = ε− σ(x, y)− σ(y, y) +mx,y + σ(x, x) > 0.

We claim that Bσδ (y) ⊆ Bσε (x). If z ∈ Bσδ (y), then
(⊕) σ(y, z) + σ(z, z)−my,z − σ(y, y) < δ.

Hence, by (M−inq) (see Definition 2.1),
σ(x, z) + σ(z, z)−mx,z − σ(x, x)

= [σ(x, z)−mx,z] + σ(z, z)− σ(x, x)
≤ [σ(x, y)−mx,y + σ(y, z)−my,z] + σ(z, z)− σ(x, x);

by adding and subtracting σ(y, y), we get

= [σ(x, y) + σ(y, y)−mx,y − σ(x, x)] + [σ(y, z) + σ(z, z)−mz,z − σ(y, y)].

By (⊕) and (?), we get

σ(x, z)+σ(z, z)−mx,z−σ(x, x) < σ(x, y)+σ(y, y)−mx,y−σ(x, x)+δ = ε.

Therefore, Bσδ (y) ⊆ Bσε (x) and Bσ is a basis on X. �

Notation 4.3. Given an M−metric σ on a set X, we denote by
Tσ the topology generated by the M−open balls

Bσε (x) = {y ∈ X|σ(x, y) + σ(y, y)−mx,y − σ(x, x) < ε};
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Tpσ the standard partial metric topology spanned by the p−open balls

Bp
σ

ε (x) = {y ∈ X|pσ(x, y)− pσ(x, x) < ε},

where pσ is the induced partial metric defined in Theorem 3.2;
i.e., Bp

σ

ε (x) = {y ∈ X|σ(x, y) +Mx,y −mx,y − σ(x, x) < ε}.
In the special case where σ is a partial metric, we denote by
Tσs the standard partial metric topology generated by the p−open

balls

Bσsε (x) = {y ∈ X|σ(x, y)− σ(x, x) < ε}.

We now move to comparing the topologies defined in Notation 4.3.
Given an M−metric σ on a set X, we show in Lemma 4.3 that Tσ is
coarser than Tpσ . In the special case where σ is a partial metric, we show
in Lemma 4.4 that Tσs = Tσ. Lemma 4.3 and Lemma 4.4 shed light as to
why we consider Tσ to be a proper generalization of Tσs .

Lemma 4.3. Let σ be an M−metric on a set X. Then Tσ is coarser
than Tpσ .

Proof. Consider the M−open ball Bσε (x). Let y ∈ Bpσε (x). Then, from
Notation 4.3,

σ(x, y) +Mx,y −mx,y − σ(x, x) < ε.

Hence,

σ(x, y) + σ(y, y)−mx,y − σ(x, x) ≤ σ(x, y) +Mx,y −mx,y − σ(x, x) < ε.

Therefore, Bp
σ

ε (x) ⊆ Bσε (x) and, hence, Tσ ⊆ Tpσ . �

Lemma 4.4. Let σ be a partial metric on a set X. Then Tσs = Tσ.

Proof. Consider the standard p−open ball Bσsε (x). Let y ∈ Bσε (x). Then
σ(x, y) + σ(y, y)−mx,y − σ(x, x) < ε. Thus,

σ(x, y)− σ(x, x) ≤ σ(x, y)− σ(x, x) + σ(y, y)−mx,y < ε.

Hence, Bσε (x) ⊆ Bσsε (x). Therefore, Tσs ⊆ Tσ.
Conversely, let y ∈ Bσsε

2
(x). Then σ(x, y)− σ(x, x) < ε

2 .

Case 1. If mx,y = σ(x, x) ≤ σ(y, y), then, from (p−lbnd) in Defini-
tion 3.1,

σ(y, y) ≤ σ(x, y) and mx,y = σ(x, x).

Hence,
σ(x, y) + σ(y, y)−mx,y − σ(x, x)

≤ σ(x, y) + σ(x, y)− σ(x, x)− σ(x, x) < 2(
ε

2
) = ε.
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Case 2. If mx,y = σ(y, y) ≤ σ(x, x), then σ(y, y)−mx,y = 0 and, hence,

σ(x, y) + σ(y, y)−mx,y − σ(x, x) = σ(x, y)− σ(x, x) <
ε

2
< ε.

Therefore, Bσsε
2

(x) ⊆ Bσε (x) and, hence, Tσ = Tσs . �

Notation 4.4. Let σ be an M−metric on a set X. We denote by
(X,σ) the M−metric space (X, Tσ);
(X, pσ) the partial metric space (X, Tpσ ).

We remind the reader that if σ is a partial metric, then the standard
partial metric space (X, Tσs) = (X, Tσ) = (X,σ).

All our work would be useless if, for every M−metric σ, Tσ = Tpσ .
We use the M−metric defined in Example 3.3 to give an example where
Tσ ( Tpσ .

Example 4.5. Let σ be an M−metric on X = R as defined in Exam-
ple 3.3 by

σ(x, y) = x+ y.

Then, Tσ ( Tpσ .

Proof. We remind our reader that if x ≤ y ∈ X, then

σ(y, y) = 2y and σ(x, x) = mx,y = 2x.

From Notation 4.3, Tσ is generated by the M−open balls

Bσε (x) = {y ∈ X|σ(x, y) + σ(y, y)−mx,y − σ(x, x) < ε}.

If y ≤ x, then σ(x, y) + σ(y, y)−mx,y − σ(x, x) = y − x ≤ 0 < ε.
If x < y, then σ(x, y) + σ(y, y)−mx,y − σ(x, x) = 3(y− x). Therefore,

Bσε (x) = (−∞, x+
ε

3
).

Again from Notation 4.3, Tpσ is generated by the p−open balls

Bp
σ

ε (x) = {y ∈ X|σ(x, y) +Mx,y −mx,y − σ(x, x) < ε}.

If y ≤ x, then σ(x, y) +Mx,y −mx,y − σ(x, x) = x− y.
If x < y, then σ(x, y) +Mx,y −mx,y − σ(x, x) = 3(y − x). Therefore,

Bp
σ

ε (x) = (x− ε, x+
ε

3
).

Clearly, Tσ ( Tpσ . �

Lemma 4.5. An M−metric space is To.
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Proof. Let (X,σ) be anM−metric space with two distinct elements x, y ∈
X. Without loss of generality, we can consider two cases.

Case 1. If σ(x, x) = σ(y, y), then by (σ−lbnd) and (σ−sep) (see Defi-
nition 3.1), and since x 6= y, we have

mx,y = σ(x, x) = σ(y, y) < σ(x, y).

Hence,

σ(x, y) + σ(y, y)−mx,y − σ(x, x) = σ(x, y)− σ(x, x) > 0.

Therefore, if ε = σ(x, y)− σ(x, x), then y /∈ Bσε (x).

Case 2. If σ(x, x) < σ(y, y), then by (σ−lbnd)
σ(x, y)−mx,y ≥ 0.

Hence,

σ(x, y) + σ(y, y)−mx,y − σ(x, x) ≥ σ(y, y)− σ(x, x) > 0.

Therefore, if ε = σ(y, y)− σ(x, x), then y /∈ Bσε (x).
Since a partial metric is an M−metric, we refer the reader to [2] and

[6] for examples of M−metric spaces that need not be T1. �

5. r−Cauchy Sequences and Limits

We begin this section by defining a Cauchy-like sequence. We use the
same approach found in [2] and [3] and apply it to the M−metric case.

Definition 5.1. Let (X,σ) be an M−metric space and r a real number.
A sequence {xi}i∈N in X is said to be r−Cauchy if and only if

lim
i,j→+∞

σ(xi, xj) = r.

r is called the central distance of {xi}i∈N.

Remark 5.2. Alternatively, we could have defined an r−Cauchy se-
quence as

lim
i 6=j→+∞

σ(xi, xj) = lim
i,j→+∞

mxi,xj = r.

This definition is closer to the one presented in [1], but since it has a
subsequence {yi}i∈N such that

lim
i,j→∞

σ(yi, yj) = r,

we find that there is very little point in using a more general definition.

Lemma 5.1. Let {xi}i∈N be an r−Cauchy sequence in an M−metric
space (X,σ). Then

(a) lim
i→+∞

σ(xi, xi) = r;
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(b) lim
i,j→+∞

mxi,xj = r;

(c) lim
i,j→+∞

Mxi,xj = r.

Proof. The proof of Lemma 5.1 is quite straightforward: (a) follows triv-
ially from Definition 5.1; (b) and (c) follow trivially from (a). �

The limit is a topological definition which we translate into the lan-
guage of M−metric spaces.

Definition 5.3. Let {xi}i∈N be an r−Cauchy sequence in an M−metric
space (X,σ). We say that a ∈ X is a limit of {xi}i∈N if and only if

lim
i→+∞

σ(a, xi) + σ(xi, xi)−ma,xi = σ(a, a).

The natural question to ask here is: How does r relate to σ(a, a)? This
question has been answered in the partial metric case in [2]. The result
remains the same in an M−metric case.

Lemma 5.2. Let {xi}i∈N be an r−Cauchy sequence in an M−metric
space (X,σ). If a is a limit of {xi}i∈N, then

r ≤ σ(a, a).

Proof. By (σ−lbnd) (see Definition 2.1), we know that for each i,

0 ≤ σ(a, xi)−ma,xi .

Adding σ(xi, xi) on both sides, we get

σ(xi, xi) ≤ σ(a, xi) + σ(xi, xi)−ma,xi .

Now taking the limit of both sides, by Lemma 5.1(a) and Definition 5.3,
we get

r ≤ σ(a, a). �

The limit of an r−Cauchy sequence need not be unique. An example
is given for the partial metric case in [2].

Reading through the partial metric literature (see, for example, [2],
[3], [4], [5], [7]), it becomes obvious that a stronger version of a limit is
needed. The M−metric space, being a generalization of a partial metric
space, is no exception.

Definition 5.4. Let {xi}i∈N be an r−Cauchy sequence in an M−metric
space (X,σ). An element a ∈ X is a special limit of {xi}i∈N if and only if

a is a limit of {xi}i∈N and σ(a, a) = r.

Unlike a regular limit, a special limit is unique.

Lemma 5.3. Let {xi}i∈N be an r−Cauchy sequence in an M−metric
space (X,σ). If a is a special limit of {xi}i∈N, then a is unique.
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Proof. Let a and b be two special limits of {xi}i∈N. From Definition 5.4,

r = σ(a, a) = σ(b, b) = ma,b.

From (σ−lbnd) (see Definition 2.1), we know that

r = σ(a, a) = ma,b ≤ σ(a, b).

Hence,
σ(a, b) = [σ(a, b)−ma,b] + r;

using (σ−inq), for all i,
σ(a, b) ≤ [σ(a, xi)−ma,xi + σ(b, xi)−mb,xi ] + r.

Therefore, by adding and subtracting σ(xi, xi), we get

σ(a, b) ≤ [σ(a, xi) + σ(xi, xi)−ma,xi ]

+[σ(b, xi) + σ(xi, xi)−mb,xi ]− 2σ(xi, xi) + r.

Since a special limit is also a limit (see Definition 5.4) and by Lemma 5.1,

σ(a, xi) + σ(xi, xi)−ma,xi → σ(a, a) = r,

σ(b, xi) + σ(xi, xi)−mb,xi → σ(b, b) = r, and
σ(xi, xi)→ σ(a, a) = r.

Hence,
σ(a, b) ≤ r + r − 2r + r = r = σ(a, a);

therefore,
σ(a, a) = σ(a, b) = σ(b, b).

By (σ−inq) (see Definition 2.1), a = b. �

Lemma 5.4. Let {xi}i∈N be an r−Cauchy sequence in an M−metric
space (X,σ). Let a be the special limit of {xi}i∈N. Then

(a) lim
i→+∞

Ma,xi = σ(a, a);

(b) lim
i→+∞

ma,xi = σ(a, a); and

(c) lim
i→+∞

σ(a, xi) = σ(a, a).

Proof. Parts (a) and (b) are straightforward.
For (c), using Definition 5.3, we get

lim
i→+∞

σ(a, xi) + σ(xi, xi)−ma,xi = σ(a, a).

Hence, using Definition 5.4 and Lemma 5.1(b), we get

lim
i→+∞

σ(a, xi) = lim
i→+∞

([σ(a, xi) + σ(xi, xi)−ma,xi ]− σ(xi, xi) +ma,xi)

= σ(a, a)− σ(a, a) + σ(a, a) = σ(a, a). �
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Lemma 5.5. Let {xi}i∈N be an r−Cauchy sequence in an M−metric
space (X,σ). If a is a special limit of {xi}i∈N, then for every y ∈ X,

lim
i→+∞

σ(y, xi)−my,xi = σ(y, a)−my,a.

Proof. The proof follows directly from (σ−lbnd) and Lemma 5.4. �

What is left is to guarantee the existence of a special limit. Therefore,
we present the notion of completeness in an M−metric space.

Definition 5.5. An M−metric space (X,σ) is said to be complete if and
only if for every real number r, every r−Cauchy sequence in X has a
special limit in X.

6. r−Cauchy Functions

One of the cornerstones of Banach-like fixed point theorems is that
the function f in question has a Cauchy-like orbit {f i(xo)}i∈N for some
xo ∈ X.

Throughout the literature, different criteria on a function f were inves-
tigated for f to be an r−Cauchy function. Many of those cases boil down
to two main ones which we present in Definition 6.1 and Definition 6.2.

Definition 6.1. Let (X,σ) be anM−metric space with xo ∈ X. Suppose
f : X → X is a function on X. We say that f is an r−Cauchy function
at xo if and only if {f i(xo)}i∈N is an r−Cauchy sequence in X.

Definition 6.2. Let (X,σ) be an M−metric space with xo ∈ X. Let
f : X → X be a function on X. Let r and 0 < c < 1 be two real
numbers. We say that f is an orbital cr−contraction at xo (or f is orbitally
cr−contractive at xo) if and only if for all natural numbers i,

r ≤ σ(f i+1(xo), f
i+1(x0)) ≤ r + ci|σ(f(xo), xo)|

and
σ(f i+2(xo), f

i+1(x0)) ≤ r + ci+1|σ(f(xo), xo)|.

Lemma 6.1. Let (X,σ) be an M−metric space with xo ∈ X. Let f :
X → X be a function on X. Let r and 0 < c < 1 be two real numbers. If
f is an orbital cr−contraction at xo, then f is an r−Cauchy function at
xo.

Proof. The proof is quite straightforward by first showing that

lim
i→+∞

σ(xi, xi) = r and, hence, lim
i,j→+∞

mxi,xj = r.

For a detailed similar proof, we refer the reader to [2, Lemma 6.2]. �
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Definition 6.3. Let (X,σ) be an M−metric space with xo ∈ X. Let
f : X → X be a function on X. Let r be a real number and ϕ : [r,+∞) ⊂
R→ [0,+∞) be a non-decreasing function such that

ϕ(t) = 0 iff t = r.

We say that f is an orbital ϕr−contraction at xo if and only if for all i
and j,

r ≤ σ(f i+1(xo), f
j+1(xo)) ≤ σ(f i(xo), f

j(xo))− ϕ(σ(f i(xo), f
j(xo)).

Lemma 6.2. Let (X,σ) be an M−metric space with xo in X. Let f :
X → X be a function on X. If f is an orbital ϕr−contraction at xo, then
f is an r−Cauchy function at xo.

Proof. The proof of Lemma 6.2 is quite delicate. We will give it in its
most explicit form while repeatedly clarifying any ambiguous notation.

Let xo ∈ X and suppose f : X → X is an orbital ϕr−contraction at
xo. Denote xi = f i(xo). To remedy any possible ambiguity, we will be
adding parentheses to differentiate between x(nk+1) and xn(k+1)

when the
need arises.

Step 1: Let ti = σ(xi+1, xi). In this step, we will show that in the
topological space R (endowed with the standard topology) {ti}i∈N is a
Cauchy sequence that converges to r.

From Definition 6.3, for all i,

σ(xi+1, xi+1) ≤ σ(xi, xi)− ϕ(σ(xi, xi));

hence, {σ(xi, xi)}i∈N forms a decreasing chain since, for all i, ϕ(ti) ≥ 0;
i.e.,

mxi,xi+1
= σ(xi+1, xi+1).

Moreover, from (σ−lbnd),
r ≤ σ(xi+2, xi+2) = mxi+2,xi+1

≤ σ(xi+2, xi+1) = ti+1 and

ti+1 = σ(xi+2, xi+1) ≤ σ(xi+1, xi)− ϕ(σ(xi+1, xi)) = ti − ϕ(ti) ≤ ti.
Hence, for all i,

r ≤ ti+1 ≤ ti;
i.e., {ti}i∈N is a non-increasing sequence in R bounded below by r and,
therefore, {ti}i∈N is a Cauchy sequence in R. Since R with the standard
topology is a complete metric space, {ti}i∈N has a limit L such that for
all i,

ti ≥ L ≥ r,
and, since ϕ is a non-decreasing function,

ϕ(ti) ≥ ϕ(L) ≥ ϕ(r) = 0;

i.e., − ϕ(ti) ≤ −ϕ(L) ≤ 0.
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Hence, by Definition 6.3,

r ≤ ti+1 ≤ ti − ϕ(ti) ≤ ti − ϕ(L)

≤ ti−1 − ϕ(ti−1)− ϕ(L) ≤ ti−1 − 2ϕ(L);

by induction,
ti+1 ≤ t1 − iϕ(L).

Assume that L > r. Then, by Definition 6.3, ϕ(L) > 0. By taking
i > t1−r

ϕ(L) , we get

ti+1 ≤ t1 − iϕ(L) < t1 −
t1 − r
ϕ(L)

ϕ(L) = r,

a contradiction, since ti ≥ r. Therefore,
(©̄) lim

i→+∞
ti = lim

i→+∞
σ(xi, xi+1) = lim

i,j→+∞
mxi,xj = r.

Step 2: We now show that {xi}i∈N is an r−Cauchy sequence by sup-
posing that it is not (a contrapositive approach).

Suppose that {xi}i∈N is not an r−Cauchy sequence. Since r ≤ σ(xi, xj),
there exists a positive real number δ such that, for every natural number
N , there exists i, j > N where

σ(xi, xj) ≥ r + δ > r.

From step 1, by choosing N big enough, for all i > N ,

r ≤ σ(xi, xi) = mxi−1,xi ≤ σ(xi, xi−1) < r + δ.

Then there exist j1 > h1 > N such that

σ(xh1
, xj1) ≥ r + δ > r.

Let n1 be the smallest number with n1 > h1 and

σ(xh1 , xn1) ≥ r + δ.

Note that
σ(xh1

, x(n1−1)) < r + δ.

There exist j2 > h2 > n1 such that

σ(xh2 , xj2) ≥ r + δ > r.

Let n2 be the smallest number with n2 > m2 and

σ(xh2
, xn2

) ≥ r + δ.

Then
σ(xh2 , x(n2−1)) < r + δ.

Continuing this process, we build two increasing sequences in N, {hk}k∈N
and {nk}k∈N, such that for all k,

(O) σ(xhk , x(nk−1)) < r + δ ≤ σ(xhk , xnk)
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and
mxhk ,xnk

= σ(xnk , xnk).

For all k, denote sk = σ(xhk , xnk). We should note that

σ(x(hk+1), x(nk+1)) 6= sk+1 = σ(xh(k+1)
, xn(k+1)

),

but rather, from Definition 6.2,
(⊗) σ(x(hk+1), x(nk+1)) ≤ σ(xhk , xnk)−ϕ(σ(xhk , xnk))= sk −ϕ(sk).

Therefore, for all k > N (N defined in the beginning of step 2),

r + δ ≤ sk = σ(xhk , xnk) = [σ(xhk , xnk)−mxhk ,xnk
] +mxhk ,xnk

;

by (σ−inq),

≤ [σ(xhk , x(nk−1))−mxhk ,xnk−1
+σ(x(nk−1), xnk)−mx(nk−1),xnk

]+mxhk ,xnk
;

by (O) and step 1,

≤ r + δ − r + t(nk−1) − r +mxhk ,xnk
.

Hence, taking k → +∞ by (©̄) and step 1,

r + δ ≤ lim
k→+∞

sk ≤ r + δ − r + r − r + r = r + δ.

We have just shown that there exists δ > 0 such that

lim
k→+∞

sk = r + δ.

Next we prove that δ = 0, giving us our contradiction. By applying
(σ−inq), we get

sk = σ(xhk , xnk) = [σ(xhk , xnk)−mxhk ,xnk
] +mxhk ,xnk

≤ [σ(xhk , x(nk+1))−mxhk ,x(nk+1)
+ σ(x(nk+1), xnk)−mx(nk+1),xnk

]

+mxhk ,xnk
≤ σ(xhk , x(nk+1))−mxhk ,x(nk+1)

+ tnk − r +mxhk ,xnk
.

Using (σ−inq) again on σ(xhk , x(nk+1))−mxhk ,x(nk+1)
, we get

sk ≤ σ(xhk , x(hk+1))−mxhk ,x(hk+1)
+ σ(x(hk+1), x(nk+1))

− mx(hk+1),x(nk+1)
+ tnk − r +mxhk ,xnk

.

Therefore, by (⊗) and step 1,

sk ≤ thk − r + sk − ϕ(sk)− r + tnk − r +mxhk ,xnk
;

i.e., 0 ≤ ϕ(sk) ≤ thk − r +−r + tnk − r +mxhk ,xnk
.

Taking the limit as k → +∞, we get

0 ≤ lim
k→∞

ϕ(sk) ≤ r − r − r + r − r + r = 0.
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Hence, and since ϕ is non-decreasing with r + δ ≤ sk,
0 ≤ ϕ(r + δ) ≤ lim

k→+∞
ϕ(sk) = 0;

i.e., r + δ = r and, therefore, δ = 0, a clear contradiction. Therefore,
the assumption considered at the beginning of step 2 is incorrect, proving
that {xi}i∈N is an r−Cauchy sequence. �

7. Continuity and Non-Expansiveness

Definition 7.1. Let (X,σ) be an M−metric space with xo ∈ X. A
function f : X → X is weakly orbitally continuous at xo if and only if
if a is the special limit of {f i(xo)}i∈N, then f(a) is a limit of {f i(xo)}i∈N.

Remark 7.2. Notice that f(a) is not required to be a special limit of
{f i(xo)}i∈N, but rather only required to be its limit.

Lemma 7.1. Let (X,σ) be an M−metric space with xo ∈ X. Let f :
X → X be a weakly orbitally continuous function at xo. If a is a special
limit of {f i(xo)}i∈N, then

ma,f(a) = σ(a, a) ≤ σ(a, f(a)) ≤ σ(f(a), f(a)).

Proof. Denote for all natural numbers i, xi = f i(xo). Since a is a special
limit of {f i(xo)}i∈N and f is weakly orbitally continuous at xo, then f(a)
is a limit of {f i(xo)}i∈N. Therefore, by Lemma 5.2,

σ(a, a) ≤ σ(f(a), f(a)),

and, hence, by (σ−lbnd),
ma,f(a) = σ(a, a) ≤ σ(a, f(a)).

Furthermore, for all i,

σ(a, f(a)) = [σ(a, f(a))−ma,f(a)] + σ(a, a);

by (σ−inq),
≤ [σ(a, xi)−ma,xi + σ(xi, f(a))−mxi,f(a)] + σ(a, a);

by adding and subtracting σ(xi, xi),

= σ(a, xi)−ma,xi +σ(xi, f(a)) + σ(xi, xi)−mxi,f(a)−σ(xi, xi)+σ(a, a);

taking the limit as i→ +∞,

= σ(a, a)−σ(a, a)+σ(f(a), f(a))−σ(a, a)+σ(a, a) = σ(f(a), f(a)). �

In Lemma 7.1, and by (σ−sep), for the special limit a to be a fixed
point of f , we need σ(f(a), f(a)) ≤ σ(a, a). This can be obtained in
various ways. In this paper we discuss two: the first is non-expansiveness
and the second is the space having σ(f(a), f(a)) as a lower bound.
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Definition 7.3. Let (X,σ) be an M−metric space. Let f : X → X be
a function on X. We say that f is non-expansive if and only if for all
x, y ∈ X,

σ(f(x), f(y)) ≤ σ(x, y).

Definition 7.4. Let (X,σ) be anM−metric space and ro a real number.
We say (X,σ) is bounded below by ro if and only if for all x, y ∈ X,

ro ≤ σ(x, y).

8. Main Theorem and Corollaries

We now present our main theorem. The reader will notice that we
tried, as much as possible, to state it in its most general form.

Theorem 8.1. Let (X,σ) be an M−metric space with xo ∈ X. Let
f : X → X be a function such that f is r−Cauchy at x0 with special limit
a ∈ X. Further assume that at least one of the following conditions holds:

(1) f is weakly orbitally continuous at x0 and non-expansive.
(2) f is weakly orbitally continuous at x0 and (X,σ) is bounded below

by σ(f(a), f(a)).
(3) f is non-expansive and (X,σ) is bounded below by σ(a, a).

Then a is a fixed point of f .

Proof. In (1) and (2), since f is weakly orbitally continuous at xo, then
by Lemma 7.1,

σ(a, a) ≤ σ(a, f(a)) ≤ σ(f(a), f(a)).

Both (1) f is non-expansive and (2) (X,σ) is bounded below by σ(f(a), f(a))
assert σ(f(a), f(a)) ≤ σ(a, a). Therefore,

σ(a, a) = σ(a, f(a)) = σ(f(a), f(a)),

and, hence, by (σ−sep), f(a) = a.

As for (3), f is non-expansive and (X,σ) is bounded below by σ(a, a)
assert that σ(f(a), f(a)) = σ(a, a) and, hence, for all i,

(	) lim
i→+∞

mf(a),f(xi) = lim
i→+∞

ma,xi

= σ(a, a) = σ(f(a), f(a)) = mf(a),a.
Therefore, by (σ−lbnd),

σ(a, a) = ma,f(a) ≤ σ(a, f(a)).

By (σ−inq), for all i,

σ(f(a), a)−mf(a),a ≤ σ(f(a), f(xi))−mf(a),f(xi) +σ(a, f(xi))−ma,f(xi).
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Hence, by non-expansiveness,

σ(f(a), a) ≤ mf(a),a + σ(a, xi)−mf(a),f(xi) + σ(a, f(xi))−ma,f(xi).

Using (	) and by taking i→ +∞, we get

σ(f(a), a) ≤ σ(a, a) + σ(a, a)− σ(a, a) + σ(a, a)− σ(a, a) = σ(a, a).

Therefore, by (σ−sep), a = f(a) �

Both Lemma 6.1 and Lemma 6.2 assert that under their respective con-
ditions, f is an r−Cauchy sequence. Unfortunately, Theorem 8.1 presents
us with the conditions to obtain a fixed point without guaranteeing its
uniqueness. We now present a valid proof of [1, Theorem 3.1 and Theorem
3.2] in Corollary 8.2 and Corollary 8.3, respectively.

We remind our reader that the definition presented for the M−metric
in [1] restricts σ to non-negative values. This section is presented with
that premise in mind.

Corollary 8.2. Let (X,σ) be a complete M−metric space. Let f : X →
X be a continuous function satisfying the following condition: There exists
0 ≤ k < 1 such that for all x, y ∈ X,

(◦) 0 ≤ σ(f(x), f(y)) ≤ kσ(x, y).

Then f has a unique fixed point.

Proof. Consider any arbitrary xo ∈ X. The function f is ϕ0−contractive
at xo (ϕr with r = 0) where ϕ(t) = (1 − k)t. Hence, using Lemma 6.2,
f is a 0−Cauchy function at xo. Since (X,σ) is complete, let a be the
special limit of {f i(xo)}i∈N. Since f is continuous, f is weakly orbitally
continuous at xo. Additionally, (◦) also asserts that f is non-expansive.
Therefore, by Theorem 8.1(1), the special limit a is a fixed point. Now to
prove uniqueness. Assume that a and b are both fixed points of f . Hence,
by (◦),

σ(a, a) = σ(f(a), f(a)) ≤ kσ(a, a) < σ(a, a),

σ(b, b) = σ(f(b), f(b)) ≤ kσ(b, b) < σ(b, b), and
σ(a, b) = σ(f(a), f(b)) ≤ kσ(a, b) < σ(a, b).

Therefore,
σ(a, a) = σ(b, b) = σ(a, b) = 0,

and, hence, by (σ−sep), a = b. �

Corollary 8.3. Let (X,σ) be a complete M−metric space. Let f : X →
X be a continuous function satisfying the following condition: There exists
0 ≤ k < 1

2 such that for all x, y ∈ X,
(4) 0 ≤ σ(f(x), f(y)) ≤ k[σ(x, f(x)) + σ(y, f(y))].

Then f has a unique fixed point.
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Proof. Consider any arbitrary xo ∈ X and denote xi = f i(xo). We first
show that f is a c0−contraction at xo (cr with r = 0) and c = 2k > k

1−k .
By (4), we get for every i,

σ(xi+1, xi+1) ≤ 2kσ(xi+1, xi).

Moreover, for every i,

σ(xi+2, xi+1) ≤ k(σ(xi+1, xi+2) + σ(xi, xi+1));

i.e., σ(xi+2, xi+1) ≤ k

1− k
σ(xi+1, xi) < cσ(xi+1, xi).

Hence,

0 ≤ σ(xi+2, xi+2) < σ(xi+2, xi+1) ≤ ci+1σ(x1, xo),

and by Lemma 6.1, f is a 0−Cauchy function at xo. Since (X,σ) is
complete, {xi}i∈N has a special limit a. Hence, by Definition 5.4, σ(a, a) =
0.

The function f is continuous and, hence, weekly orbitally continuous
at xo. Therefore, by Lemma 7.1, we have

ma,f(a) = σ(a, a) ≤ σ(a, f(a)) ≤ σ(f(a), f(a)).

Additionally, by (4),

σ(f(a), f(a)) ≤ 2kσ(a, f(a)) ≤ 2kσ(f(a), f(a)).

Hence, σ(f(a), f(a)) = 0, completing the requirement for Theorem 8.1(2).
As for uniqueness, assume both a and b are fixed points of f . Hence, by
(4),

σ(a, b) = σ(f(a), f(b)) ≤ 2kσ(a, b) and

σ(a, a) = σ(f(a), f(a)) ≤ 2kσ(a, a);

similarly,

σ(b, b) = σ(f(b), f(b)) ≤ 2kσ(b, b).

Therefore,

σ(a, a) = σ(b, b) = σ(a, b) = 0,

and, by (σ−sep), a = b. �
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