
Volume 54, 2019

Pages 103–108

http://topology.auburn.edu/tp/

http://topology.nipissingu.ca/tp/

Lusternik–Schnirelmann Category of
the Configuration Space of
Complex Projective Space

by

Cesar A. Ipanaque Zapata

Electronically published on November 16, 2018

Topology Proceedings

Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings

Department of Mathematics & Statistics
Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu
ISSN: (Online) 2331-1290, (Print) 0146-4124

COPYRIGHT c⃝ by Topology Proceedings. All rights reserved.



Volume 54 (2019)
Pages 103-108

http://topology.auburn.edu/tp/
http://topology.nipissingu.ca/tp/

E-Published on November 16, 2018

LUSTERNIK�SCHNIRELMANN CATEGORY OF

THE CONFIGURATION SPACE OF

COMPLEX PROJECTIVE SPACE

CESAR A. IPANAQUE ZAPATA

Abstract. The Lusternik�Schnirelmann category cat(X) is a ho-
motopy invariant which is a numerical bound on the number of
critical points of a smooth function on a manifold. Another sim-
ilar invariant is the topological complexity TC(X) (a la Farber)
which has interesting applications in robotics, speci�cally, in the
robot motion planning problem. In this paper we calculate the
Lusternik�Schnirelmann category and, as a consequence, we calcu-
late the topological complexity of the two-point ordered con�gura-
tion space of CPn for every n ≥ 1.

1. Introduction

The ordered con�guration space of k distinct points of a topological
space X (see [4]) is the subset

F (X, k) = {(x1, . . . , xk) ∈ Xk | xi 6= xj for all i 6= j}

topologized as a subspace of the Cartesian power Xk. This space has
been used in robotics to try to avoid collisions when one controls multiple
objects simultaneously [6].

The �rst de�nition of category, given by L. Lusternik and L. Schnirel-
mann [9], was a consequence of an investigation to obtain numerical

2010 Mathematics Subject Classi�cation. Primary 55R80, 55M30; Secondary
55T10.

Key words and phrases. complex projective space, con�guration space, Lusternik�
Schnirelmann category, topological complexity.

The author wishes to acknowledge support for this research from FAPESP
2016/18714-8.

c©2018 Topology Proceedings.

103



104 C. A. IPANAQUE ZAPATA

bounds for the number of critical points of a smooth function on a mani-
fold.

Here we follow a de�nition of category, one greater than that given in
[3]. We say that the Lusternik�Schnirelmann category or category of a
topological space X, denoted cat(X), is the least integer m such that X
can be covered withm open sets, which are all contractible withinX. One
of the basic properties of cat(X) is its homotopy invariance [3, Theorem
1.30].

Proposition 1.1 below gives the general lower and upper bound of the
category of a space X.

Proposition 1.1. (1) [11, Proposition 2.1(5)] If X is an (n−1)-connected
CW-complex, then

cat(X) ≤ dim(X)

n
+ 1.

(2) [3, Theorem 1.5] Let R be a commutative ring with unit and X be

a space. We have

1 + cupR(X) ≤ cat(X)

where cupR(X) is the least integer n such that all (n+1)-fold cup products

vanish in the reduced cohomology H̃?(X;R).

On the other hand, we recall the de�nition of topological complexity
(see [5] for more details). The topological complexity (TC) of a path-
connected space X is the least integer m such that the Cartesian product
X ×X can be covered with m open subsets Ui,

X ×X = U1 ∪ U2 ∪ · · · ∪ Um,

such that for any i = 1, 2, . . . ,m there exists a continuous function si :
Ui −→ PX, π ◦ si = id over Ui. If no such m exists we will set TC(X) =
∞. Where PX denotes the space of all continuous paths γ : [0, 1] −→ X
in X and π : PX −→ X × X denotes the map associating to any path
γ ∈ PX, the pair of its initial and end points π(γ) = (γ(0), γ(1)). Equip
the path space PX with the compact-open topology.

The central motivating result of this paper is the Lusternik�Schnirelmann
category of the con�guration space of two distinct points in complex pro-
jective n-space for all n ≥ 1.

Theorem 1.2. For n ≥ 1,

cat(F (CPn, 2)) = 2n.

As an application, we have the following statement.

Corollary 1.3. For n ≥ 1,

TC(F (CPn, 2)) = 4n− 1.
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2. Proof

In this section we prove Theorem 1.2 and Corollary 1.3. We begin with
two lemmas needed for our proofs.

Lemma 2.1. For n ≥ 1,

Hq(F (CPn, 2);Z) =

 Z⊕( q
2+1), q = 0, 2, 4, · · · , 2(n− 1);

Z⊕(2n− q
2 ), q = 2n, 2n+ 2, · · · , 2n+ 2(n− 1);

0, otherwise.

Proof. By the Leray�Serre spectral sequence [10, Theorem 5.4] of the
�bration F (CPn, 2) −→ CPn, (x, y) 7→ x with �bre CPn−1 ([4, Theorem
1], we have the E2-term

E2
p,q = Hp(CPn;Z)⊗Hq(CPn−1;Z)

and all those di�erentials are zero (see Figure 1). So Lemma 2.1 follows.
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Figure 1. E2-term.

We recall that F (CPn, 2) is simply connected since CPn and CPn−1

are. By [8, Proposition 4C.1], we have the following corollary.

Corollary 2.2. The con�guration space of complex projective space
F (CPn, 2) has the homotopy type of a CW complex which has j + 1
2j-cells (j = 0, 1, . . . , n − 1), and 2n − j 2j-cells (j = n, n + 1, n +
2, . . . , n+ (n− 1)). In particular, F (CPn, 2) has the homotopy type of a
2(2n− 1)-dimensional �nite CW complex.
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The multiplicative structure of the cohomological algebra of the con-
�guration space F (CPn, 2) is given in [12, Theorem 2]:

H?(F (CPn, 2);C) =
C[a1, a2]

〈rn(a1, a2); an+1
1 ; an+1

2 〉
,

where deg(a1) = deg(a2) = 2 and rn(x, y) = xn+xn−1y+ · · ·+yn. Thus,
we can conclude an1a

n
2 = 0 and an−1

1 an2 6= 0, since an1a
n
2 = rn(a1, a2)a

n
2 = 0

and an−1
1 an2 is a unique (up to sign) generator of H4n−2 = C.

Lemma 2.3. cupC(F (CPn, 2)) = 2n− 1.

Proof. We just have to note that an1a
n
2 = 0 and an−1

1 an2 6= 0. �

Proof of Theorem 1.2. Using Corollary 2.2, Lemma 2.3, and Proposition
1.1, the proof follows. �

Proof of Corollary 1.3. Since F (CPn, 2) is path-connected and paracom-
pact, the inequality

TC(F (CPn, 2)) ≤ 4n− 1

follows from Theorem 1.2 and [5, Theorem 5]. On the other hand, 1 ⊗
a1 − a1 ⊗ 1 and 1⊗ a2 − a2 ⊗ 1 ∈ H?(F (CPn, 2);C)⊗H?(F (CPn, 2);C)
are zero-divisors whose (2n− 1)th power

(1⊗ a1 − a1 ⊗ 1)2n−1 = pan−1
1 ⊗ an1 + qan1 ⊗ an−1

1 ;

(1⊗ a2 − a2 ⊗ 1)2n−1 = pan−1
2 ⊗ an2 + qan2 ⊗ an−1

2 ,

where p = (−1)n−1
(
2n−1
n−1

)
and q = (−1)n

(
2n−1

n

)
.

Thus, we have that

(1⊗ a1 − a1 ⊗ 1)2n−1(1⊗ a2 − a2 ⊗ 1)2n−1 = 2p2an−1
1 an2 ⊗ an−1

1 an2

does not vanish. The opposite inequality

TC(F (CPn, 2)) ≥ 4n− 1

now follows from [5, Theorem 7]. �

Remark 2.4. Corollary 1.3 in the case n = 1 was also calculated by
Daniel C. Cohen and Michael Farber in [2, Theorem A].

Remark 2.5. Theorem 1.2 shows that the con�guration space F (CPn, 2)
satis�es Ganea's conjecture because cat(F (CPn, 2)) = cupC(F (CPn, 2))+
1.

Remark 2.6. By [7, Corollary 3.2], we have

(2.1) TC(M) = dim(M) + 1

when M is a closed simply connected symplectic manifold. Corollary 1.3
shows that (2.1) for noncompact cases does not hold.
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Remark 2.7. We will compare the result stated in Corollary 1.3 with
the topological complexity of the Cartesian product CPn × CPn. By [7,
Corollary 3.2], we have

TC(CPn × CPn) = 4n+ 1.

Thus, on the complex projective space CPn, the complexity of the collision-
free motion planning problem for two robots is less complicated than the
complexity of the similar problem when the robots are allowed to collide.
This example also provides an illustration of the fact that the concept
TC(X) re�ects only the topological complexity, which is just a part of the
total complexity of the problem.1

Remark 2.8. We note that the con�guration space F (CPn, 2) is the
space of all lines in the complex projective space CPn since two points
in CPn generate a subspace of dimension 1. More generally, in [1] the
ordered con�guration space F (CPn, k) has a strati�cation with complex
submanifolds as follows:

F (CPn, k) =

n∐
i=1

F i(CPn, k),

where F i(CPn, k) is the ordered con�guration space of all k points in CPn

generating a subspace of dimension i.

Remark 2.9. There is no discussion of what might happen for more than
two points. Thus, it is interesting to calculate the TC for the ordered
con�guration space F (CPn, k) when k ≥ 3. In general, calculate the TC
for the ordered con�guration space F (V, k) where V is a smooth complex
projective variety.
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