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NOTES ON LINEARLY H-CLOSED SPACES AND

OD-SELECTION PRINCIPLES

MATHIEU BAILLIF

Abstract. A space is called linearly H-closed if and only if any
chain cover possesses a dense member. This property lies strictly
between feeble compactness and H-closedness. While regular H-
closed spaces are compact, there are non-compact linearly H-closed
spaces which are even collectionwise normal and Fréchet�Urysohn.
We give examples in other classes and ask whether there is a �rst
countable normal linearly H-closed non-compact space in ZFC. We
show that PFA implies a negative answer if the space is moreover
either locally separable or both locally compact and locally ccc.
An Ostaszewski space (built with ♦) is an example which is even
perfectly normal. We also investigate Menger-like properties for
the class of od-covers, that is, covers whose members are open and
dense.

1. Introduction

This note is mainly about a property (to our knowledge not investigated
before) we decided to call linear H-closedness, which lies strictly between
H-closedness and feeble compactness. Since it came up while investigating
simple instances of od-selection properties (see below), and all have a
common �density of open sets� �avor, we include a section about this
latter topic although they are not related more than on a super�cial level.

By �space� we mean �topological space.� We take the convention that
�regular� and �normal� imply �Hausdor�.� A cover of a space always
means a cover by open sets, and a cover is a chain cover if it is linearly
ordered by the inclusion relation. In any Hausdor� space (of cardinality
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110 M. BAILLIF

at least 2), each point has a non-dense neighborhood, and, thus, the space
has the property of possessing a cover by open non-dense sets, but the
chain-generalization of this property may fail.

De�nition 1.1. A space X is linearly H-closed if and only if any chain
cover has a member which is dense in X (or, equivalently, if and only if
any chain cover has a �nite subfamily with a dense union).

Recall that a Hausdor� space any of whose covers has a �nite sub-
family with a dense union is called H-closed, whence the name �linearly
H-closed.� While H-closed regular spaces are compact (see [22, Corollary
4.8(c)] for a simple proof), there are plenty of Tychono� linearly H-closed
non-compact spaces, perhaps the most simple being the Tychono� plank
(see Example 2.8). We will give examples in various classes, such as �rst
countable, normal, collectionwise normal, etc., but while there are consis-
tent examples of non-compact, perfectly normal, �rst countable, linearly
H-closed spaces, we were unable to determine whether a non-compact,
�rst countable, normal, linearly H-closed space exists in ZFC alone. A
partial result is that PFA prevents such a space from existing if it is more-
over either locally separable or both locally compact and locally ccc (see
Theorem 2.13). These results are contained in �2.

In �3, we investigate Menger-like properties for od-covers of topolog-
ical spaces, that is, covers whose members are open and dense. In our
short study, we show, in particular, that the class of non-compact spaces
satisfying Ufin

(
O,∆

)
does contain some Hausdor� spaces but no regular

spaces, and that a separable space satis�es Ufin
(
∆,O

)
if and only if it

satis�es Ufin
(
O,O

)
, where ∆ is the class of od-covers. We defer the def-

inition of Ufin
(
A,B

)
until �3. Research on selection principles (such as

Menger-like properties) currently �ourishes and sees an impressive �ow
of new results (see, for instance, [23] and [26] for surveys about recent
activity in the �eld). Since the author is not an expert on the subject and
admits to feeling a bit lost in its numerous subtleties, we shall content
ourselves with a humble introduction to the class of od-covers and derive
only basic properties.

For convenience, we now give a grouped de�nition: the (od-)[linear-]
Lindelöf number (odL(X)) [`L(X)] L(X) of a space X is the smallest car-
dinal κ such that any (od-)[chain] cover of X has a subcover of cardinality
≤ κ. A space is od-compact if and only if any od-cover has a �nite sub-
cover, and we de�ne similarly od-Lindelöf, linearly-Lindelöf, etc. We do
not assume separation axioms in any of these properties. It happens that
the od-Lindelöf number and the Lindelöf number almost always coincide;
the only exception is when the space contains a �big� clopen discrete sub-
space. See �3 (especially Theorem 3.1) for details and remarks about the
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ignorance of past results. For the information of the reader, we note that
our de�nitions above of odL(X), `L(X), and L(X), are di�erent from the
ones we found convenient to give in [1], where, for example, L(R) = ω1,
not ω.

2. Linearly H-Closed Spaces

In this section, each space is assumed to be Hausdor�, even though
that property is not needed for every assertion, and we will repeat the
assumption often (for clarity). Any chain cover possesses a subcover in-
dexed by a regular cardinal and, for simplicity, we will always use such
indexing. It is immediate that the continuous image of a linearly H-closed
space is linearly H-closed. Our �rst lemma is almost trivial.

Lemma 2.1. A space is linearly H-closed if and only if any in�nite cover
of it has a subfamily of strictly smaller cardinality with a dense union.

Proof. Given a chain cover indexed by a regular cardinal, a subcover of
strictly smaller cardinality is contained in some member, so the latter
implies the former. If X is linearly H-closed, given a cover {Uα : α ∈ κ},
then the sets Vα = ∪β<αUβ form a chain cover and some Vα is dense. �

It is well known that a space is H-closed if and only if any open �lter
base on X (that is, a �lter base containing only open subsets of X) has an
adherent point. See, for instance, (the proof of) [22, Proposition 4.8(b),(2)
⇔ (3)]. The referee pointed out to us that a similar result holds for linear
H-closedness. By a chain �lter base we mean an open �lter base which is
linearly ordered by the inclusion relation. The proof we just mentioned
can be easily adapted to show the following.

Lemma 2.2. A space X is linearly H-closed if and only if any chain �lter
base on X has an adherent point.

Likewise, the following result (also suggested by the referee) can be
proved as in [22, Proposition 4.8(e)].

Lemma 2.3. If X is linearly H-closed and U is open, then U is linearly
H-closed.

However, not every closed subset of a linearly H-closed space is linearly
H-closed; see, for instance, Example 2.8. Linear H-closedness is linked to
other generalized compactness properties, as seen in Figure 1, where plain
straight arrows denote implications that hold for Hausdor� spaces (and
most of them for any space), while additional properties (for instance,
those written on their side) are needed for those denoted by dotted curved
arrows.
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Recall that a space is feebly compact if and only if every locally �nite
family of open sets is �nite. This turns out to be equivalent to �every
locally �nite cover is �nite� and to �every countable cover of X has a
�nite subfamily with a dense union� (see [22, Theorem 1.11(b)]). The
term �feebly compact� is due to Marde²i¢ and Papi¢ (see [25, p. 902]). A
space is pseudocompact if and only if any continuous real valued function
on it is bounded. All implications in Figure 1 are classical except linearly
H-closed −→ feebly compact and its converse whose proofs are given in
Lemma 2.4. An example of condition (*) is given in the statement of the
lemma.

Compact H-closed Linearly

H-closed

Countably

compact

Feebly 

compact

Pseudo-

compact

Regular

TychonoffNormal

L
in

d
el

ö
f

L
in

d
el

ö
f

(*)

Figure 1. Some implications for Hausdor� spaces.

We decided to state this lemma in an almost absurd amount of gener-
ality, so we need some de�nitions. The good news is that more readable
corollaries do follow quite easily. Given an in�nite cardinal κ, a space is
initially κ-[linearly] Lindelöf if and only if any open [chain] cover of car-
dinality ≤ κ has a countable subcover. Notice that any space is initially
ω-[linearly] Lindelöf. The weak Lindelöf number wL(X) of a space X is
the least cardinal κ such that any open cover of X has a subfamily of
cardinality ≤ κ whose union is dense. Notice that if Y ⊂ X is dense, then
wL(X) ≤ wL(Y ) and if Y is feebly compact, then so is X.

Lemma 2.4. (1) A linearly H-closed space is feebly compact.
(2) Let X be a Hausdor� space, Y ⊂ X be dense in X, and κ be an

in�nite cardinal. Assume that wL(X) ≤ κ and that Y is both initially
κ-linearly Lindelöf and feebly compact. Then X is linearly H-closed.

Proof. (1) Given a countable cover U = {Un : n ∈ ω} of a linearly H-
closed X, set Vn = ∪m≤nUm. Then Vn is dense for some n, and the result
follows.
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(2) Let U = {Uα : α ∈ λ} be an in�nite chain cover of X, with λ a
regular cardinal. Assume �rst that λ ≤ κ. Thus, there is a countable
subfamily that covers Y , and then some Uα is dense in it by feeble com-
pactness. It follows that Uα is dense in X as well. Now, suppose that
λ > κ. Since wL(X) ≤ κ, there is some subfamily of cardinality ≤ κ < λ
whose union is dense in X and, by regularity of λ, its union is contained
in some Uα. �

A case not covered by this lemma is the following easy fact.

Lemma 2.5. Let X be a Hausdor� space containing a dense feebly com-
pact linearly Lindelöf subspace Y . Then X is linearly H-closed.

Proof. Given a chain cover of Y , linear Lindelöfness gives a countable sub-
cover and then feeble compactness gives a �nite subfamily of the subcover
which contains a dense member. �

For a cardinal κ, a space is κ-cc (or ccc if κ = ω) if and only if any
disjoint collection of open sets has cardinality at most κ. A space with a
dense subset of cardinality κ is obviously κ-cc.

Corollary 2.6. If X is Hausdor� and possesses a dense feebly compact
ccc subspace Y , then X is linearly H-closed.

Proof. It is well known that a κ-cc space has a weak Lindelöf number
≤ κ; hence, wL(Y ) ≤ ω. Invoking the vacuousness of the de�nition, Y
is also initially ω-Lindelöf, and the conditions of Lemma 2.4(2) are thus
ful�lled. �

Recall that a space is perfect if and only if any closed subset is a Gδ.

Corollary 2.7. Let X be a feebly compact regular perfect space. Then X
is �rst countable and linearly H-closed.

Proof. In [10, p. 378, (b)], Irving Glicksberg (using di�erent terminology)
provides a proof that a Gδ point in a regular feebly compact space has a
countable neighborhood base. For another proof, see [21, Lemma 2.2 ].
Moreover, [21, Lemma 2.3 ] shows that if each closed set in X is a Gδ,
then X is ccc. �

We can use Lemma 2.4 to obtain simple examples.

Example 2.8. There are linearly H-closed Tychono� spaces of arbitrarily
high weak Lindelöf number and cellularity.

Details. A very classical example is the Tychono� plank of a regular
cardinality. Let us recall the construction and its properties for con-
venience. Fix a regular cardinal κ. Let X be the subspace of the product
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(κ+ +1)×(κ+1) obtained by removing the point {〈κ+, κ〉}. Each ordinal
is given the order topology.

As a subspace of a compact space, X is Tychono�. The cellularity of X
is at least κ+ since {α}×(κ+1) for successor α ∈ κ+ is a disjoint collection
of open subsets. The cover {α×(κ+1) : α ∈ κ+}∪{(κ++1)×β : β ∈ κ}
shows that wL(X) ≥ κ. Since (κ+ + 1)×κ is the union of κ compact sets
and is dense in X, wL(X) ≤ κ. Recall that κ+ with the order topology is
initially κ-compact, and so is its product with the compact space (κ+ 1)
(see, e.g., [24, Theorem 2.2 ]). Thus, the dense subset Y = κ+×(κ+1) is,
in particular, feebly compact and initially κ-Lindelöf. This implies that
X is linearly H-closed by Lemma 2.4(2). �

Of course, these spaces are not �rst countable. Let us give more elab-
orate examples. All are �classical� spaces which happen to be linearly H-
closed. In the following, we refer to [27] for the de�nitions of the �small�
uncountable cardinals p and b, but recall that ω1 ≤ p ≤ b ≤ 2ℵ0 and
that each inequality may be strict. The diamond axiom ♦ implies the
continuum hypothesis CH and is de�ned in any book on set theory.

Example 2.9. There are linearly H-closed non-compact spaces with the
following additional properties:
(a) First countable, Tychono�, Lindelöf number ω1. [3, Example 1]
(b) First countable, locally compact (and thus Tychono�), perfect. [9,
Exercise 5I] and [15]
(c) (p = ω1) First countable, locally compact, normal. [7]
(d) (♦) First countable, locally compact, perfectly normal. [20]
(e) Frechet�Urysohn, collectionwise normal. [Folklore]

Details. Linear H-closedness follows from Corollary 2.6 in each case except
(b) where Corollary 2.7 is used.

(a) Murray G. Bell [3, Example 1] constructed a �rst countable count-
ably compact ccc (non-separable) Tychono� space X. Since X is an
increasing union of ℵ1-many compact spaces, it has Lindelöf number ω1.

(b) The space Ψ, due independently to J. Isbell [9, Exercise 5I] and S.
Mrówka [15], is �rst countable, perfect, Tychono�, and feebly compact.
This space is not countably compact, and thus non normal.

(c) S. P. Franklin and M. Rajagopalan [7] introduced a class of spaces
called γN spaces, which consist of a dense discrete countable set to which
is �attached� a copy of ω1 in such a way that the space is locally com-
pact and normal, with various additional properties depending on how
the attachment is done. In particular, their Example 1.4 is countably
compact under CH. The constructions were later simpli�ed and general-
ized by various authors including van Douwen, P. Nyikos, and Vaughan,
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and a version of γN which is countably compact and �rst countable can
be built if and only if p = ω1. For more details, see, for instance, Nyikos's
account in [16, Theorem 2.1 and Example 3.4] and [18]).

(d) The celebrated space attributed to A. J. Ostaszewski [20] is a �rst
countable, perfectly normal, hereditarily separable, countably compact,
locally compact, non-compact space built with ♦.

(e) The sigma-product of 2ω1 , i.e., the subspace of the compact space
2ω1 where at most countably many coordinates have value 1, is collection-
wise normal, Frechet�Urysohn, countably compact, and ccc (see, for in-
stance, Henno Brandsma's answer on the MathOver�ow question [5]). �

More than ZFC is necessary for the construction in (c); see Theorem
2.14 below. Bell's space in (a) cannot be shown to be locally compact in
ZFC by Theorem 2.15. It is also not separable, and no separable regular
example with Lindelöf number ω1 can be found in ZFC, as the next lemma
shows.

Lemma 2.10. A �rst countable separable linearly H-closed Hausdor�
space of Lindelöf number < p is H-closed (and thus compact if regular).

Notice the similarity with the fact (proved in [12]) that a regular sep-
arable countably compact space of Lindelöf number < p is compact.

Proof. A �rst countable separable space has countable π-weight, as easily
seen. Since X is linearly H-closed, it is feebly compact. A feebly compact
space with countable π-weight and Lindelöf number < p is H-closed ([21,
Lemma 3.1]). �

Likewise, Example 2.9(d) cannot be constructed in ZFC + CH alone.

Lemma 2.11. It is consistent with ZFC (and even with ZFC + CH) that
a perfectly normal linearly H-closed space is compact. In particular, it
follows from MA + ¬CH.

Proof. A linearly H-closed normal space is countably compact; William
Weiss [28] shows thatMA+ ¬CH implies that a countably compact regular
perfect space is compact, and Todd Eisworth [6] shows that this latter
result is compatible with CH. �

Question 2.12. Is there a normal �rst countable linearly H-closed non-
compact space in ZFC?

The following theorem is a partial answer.

Theorem 2.13. (PFA) Let X be a normal linearly H-closed space. If
either (a) X is countably tight and locally separable, or (b) X is �rst
countable, locally compact, and locally ccc, then X is compact.
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Our use of PFA is indirect. Indeed, we need only two of its classical
consequences. Recall that PFA implies MA + ¬CH.
Theorem 2.14 ([2, Corollary 2]). (PFA) Every separable, normal, count-
ably tight, countably compact space is compact.

Theorem 2.15 ([11]). (MA + ¬CH) Every �rst countable, locally com-
pact, ccc space is separable.

Proof of Theorem 2.13. (a) If X is not compact, we will show that it
is possible to de�ne open subsets Uα ⊂ X for each α < ω1, such that
Uβ $ Uα whenever β < α. Then Y = ∪α<ω1Uα is a clopen subset of X.
Openness is immediate. To see that it is closed, notice that given a point
x ∈ Y by countable tightness, there is a countable subset of Y having x
in its closure. But a countable subset of Y is contained in some Uα, so
x ∈ Uα ⊂ Uα+1 ⊂ Y . It follows that X is not linearly H-closed, since no
member of the chain cover {(X − Y ) ∪ Uα : α ∈ ω1} is dense in X.

To �nd Uα, we proceed by induction. Each will be a separable open
subset of X. Let U0 be any such open separable subset. Assume that
Uβ is de�ned for each β < α. Recall that by normality and linear H-
closedness X is countably compact. Thus, Z = ∪β<αUβ , being separable,
is compact by Theorem 2.14. If Z = X, then X is compact. Otherwise,
choose a point x 6∈ Z, cover {x} ∪Z by open separable sets, and take the
union of a �nite subcover to obtain a separable Uα properly containing
Z. In particular, Uβ ⊂ Uα for all β < α. This de�nes Uα for each α < ω1

with the required properties.
(b) We proceed as in (a), de�ning Uα to be ccc with compact closure.

The successor stages are the same. If α is limit, then ∪β<αUβ , having a
dense ccc subspace, is ccc. By Theorem 2.15, it is separable under MA +
¬CH and thus compact under PFA. �

Remark 2.16. In [16, Theorem 5.4 ], Nyikos seems to indicate that
there are models of MA + ¬CH or even PFA− with separable, locally
compact, locally countable, countably compact, countably tight normal
spaces, but we do not know to which spaces this assertion refers. The
referee kindly informed us that the preprint [19], where these spaces were
probably described, was never published.

We now brie�y investigate how far a �rst countable linearly H-closed
space is from being sequentially compact and show in Lemma 2.17 below
that there are restrictions on the Lindelöf number. (The result seems well
known; see the remarks before Problem 359 in [27], but we include the
proof for completeness.) We �rst need some vocabulary. A collection of
subsets of X is a discrete collection if each point of X possesses a neigh-
borhood intersecting at most one member of the collection. This implies
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that given any subcollection, the union of the closures of its members is
closed. A space satis�es the condition wD if, given any in�nite closed
discrete subspace D of X, there is an in�nite D′ ⊂ D which expands to a
discrete collection of open sets; that is, for each x ∈ D′, there is an open
Ux 3 x such that {Ux : x ∈ D′} is a discrete collection.

Lemma 2.17. A regular, �rst countable, feebly compact space either is
countably compact or has Lindelöf number ≥ b.

Proof. Let X be a regular �rst countable space whose Lindelöf number is
< b and suppose that it is not countably compact. Thus, let {xn ∈ X :
n ∈ ω} be an in�nite closed discrete subset. A regular �rst countable
space with Lindelöf number < b satis�es wD (see [17, Proposition 3.6 and
Theorem 3.7]). Thus, let E ⊂ ω be in�nite and Un 3 xn (n ∈ E) be open
such that {Un : n ∈ E} is discrete. In particular, {Un : n ∈ E} is an
in�nite locally �nite family of open sets, which is impossible in a feebly
compact space. �

We close this section with two results due to the referee who kindly
gave us permission to include them in this note. First, notice that by
continuity of the projections, if a product of spaces is linearly H-closed,
then each factor space is linearly H-closed. But the converse may fail.

Proposition 2.18. There is a linearly H-closed space G such that G×G
is not linearly H-closed.

Proof. It is well known (for example, see [9, Example 9.15]) that there
exists a subspace G of the Stone��ech compacti�cation of the integers βω
such that ω ⊂ G (hence, G is separable), and G, but not G×G, is feebly
compact. Thus, G is linearly H-closed by Corollary 2.6, while G × G is
not. �

However, the following holds.

Proposition 2.19. If X is H-closed and Y is linearly H-closed, then
X × Y is linearly H-closed.

Proof. We use the characterization of linear H-closedness given by Lemma
2.2. Let U be a chain �lter base on X ×Y . Since the projection on the Y
factor πY is open, {πY (U) : U ∈ U} is a chain �lter base on Y and hence
has an adherent point y ∈ Y . Let
P = {(X ×W ) ∩ U : U ∈ U and W is an open neighborhood of y}.

Then P is an open �lter base, and hence {πX(V ) : V ∈ P} must have
an adherent point x ∈ X. For every neighborhood V ⊂ X and W ⊂
Y of x and y, respectively, and every U ∈ U , we have by construction
U ∩ (V ×W ) 6= ∅. It follows that 〈x, y〉 is an adherent point of U . �
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3. Od-Selection Properties

No separation axiom is assumed in this section. Allow us �rst a remark
about the od-Lindelöf number. The author proves in [1] that a T1 space is
od-compact if and only if the subspace of non-isolated points is compact,
and that a T1 space with od-Lindelöf number ≤ κ either has a closed
discrete subset of cardinality > κ, or `L(X) ≤ κ whenever κ is regular.
We made the remark that since the methods were elementary, it would
not be a surprise if similar results we were unaware of had appeared
elsewhere. It was indeed the case: C. F. Mills and E. Wattel [14] have
shown that a T1 space without isolated points with odL(X) ≤ κ satis�es
L(X) ≤ κ as well, which is much stronger (the compact case is actually
due to Miroslav Kat¥tov in 1947 [13]). Robert L. Blair [4] later improved
their proof. (Both papers actually deal with [κ, λ]-compactness.) We show
below that a very small modi�cation of Blair's proof yields the following.

Theorem 3.1 ([14] and [4]). Let κ be an in�nite cardinal. Let X be a T1
space with odL(X) ≤ κ. Then either X contains a clopen discrete subset
of cardinality > κ, or L(X) ≤ κ. Moreover, the subspace of non-isolated
points of X has Lindelöf number ≤ κ.

Proof. We follow Blair's proof. First, it is easy to see that a space has
od-Lindelöf number ≤ κ if and only if any closed nowhere dense subset
has Lindelöf number ≤ κ. Let U be an open cover of X. Let W be
a maximal family of disjoint open sets such that each member of W is
contained in a member of U . Then ∪W is dense. We may thus cover
X−∪W by a subfamily V ⊂ U of cardinality ≤ κ. Take one point in each
member of W which is not entirely covered by ∪V. This de�nes a closed
discrete subset of D ⊂ X. Let D0 = {d ∈ D : d is isolated in X}. Then
D −D0 is nowhere dense and hence of cardinality at most κ. It follows
that at most κ members of U cover ∪{Wd : d ∈ D − D0}, where Wd is
the unique member of W containing d ∈ D. The uncovered part of X is
now contained in ∪{Wd : d ∈ D0}. Then either |D0| ≤ κ, in which case
we add ≤ κ members of U to complete the subcover, or |D0| > κ and X
contains a clopen discrete subset of cardinality > κ. The �moreover� part
follows easily from, e.g., [1, Lemma 4.8 ]. �

For other results in the same spirit, see [8]. Let us now turn to selections
properties. In what follows, O and ∆ mean the collection of covers and
od-covers, respectively, of some topological space, which will be clear from
the context. Recall that a cover is an od-cover if and only if every member
is dense. Given collections A and B of covers of a space X, we de�ne the
following property:
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Ufin
(
A,B

)
: For each sequence 〈Un : n ∈ ω〉 of members of A

which do not have a �nite subcover, there are �nite Fn ⊂ Un such
that {∪Fn : n ∈ ω} ∈ B.

Recall that the classical Menger property is (equivalent to) Ufin
(
O,O

)
,

and that
σ-compact −→ Ufin

(
O,O

)
−→ Lindelöf.

3.1. The property Ufin
(
O,∆

)
.

Let us �rst show the following simple lemma.

Lemma 3.2. The following equivalences hold for any space X.

(a) Lindelöf and linearly H-closed ←→ Lindelöf and H-closed,
(b) Ufin

(
O,O

)
and linearly H-closed ←→ Ufin

(
O,O

)
and

H-closed ←→ Ufin
(
O,∆

)
.

Moreover, the properties in (b) imply those in (a).

Proof. (a) Immediate by Lemma 2.1.
(b) The leftmost equivalence follows from (a) by Lindelöfness. Let us

prove the rightmost equivalence. For the direct implication, let 〈Un〉 be a
sequence of covers, and let Fn ⊂ Un be �nite such that {∪Fn : n ∈ ω} is a
cover of X. By H-closedness, we can choose �nite Gn ⊂ Un such that ∪Gn
is dense. Taking Fn ∪ Gn yields the result. For the converse implication,
Ufin

(
O,O

)
trivially holds. We prove that X is linearly H-closed and use

the leftmost equivalence to obtain H-closedness. Suppose that there is
a chain cover U = {Un : n ∈ ω} without any dense member. A �nite
union of members of U , being contained in a member of U , is therefore
not dense; taking Un = U for all n ∈ ω gives a sequence of open covers
violating Ufin

(
O,∆

)
.

The �moreover� part is immediate since Ufin
(
O,O

)
−→ Lindelöf. �

The situation is then very simple for regular spaces.

Proposition 3.3. The following properties are equivalent for regular
spaces.
(a) Lindelöf and linearly H-closed,
(b) Ufin

(
O,∆

)
,

(c) compact.

Proof. (b) → (a) by Lemma 3.2 and (c) → (b) is trivial. Since a regular
H-closed space is compact, (a) → (c) follows again by Lemma 3.2. �

We will show that both (a)→ (b) and (b)→ (c) may fail for Hausdor�
spaces; that is, we shall exhibit Hausdor� examples of Lindelöf (linearly)
H-closed spaces which do not satisfy Ufin

(
O,O

)
and non-compact spaces
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which satisfy Ufin
(
O,∆

)
. Recall that a space Y is an extension of the

space X if and only if Y contains a copy of X which is dense in Y . H-
closed extensions of Hausdor� spaces are well studied; see, for instance,
[22]. The examples we describe below are very similar to the ones given
in Chapter 7 of this book. They can be seen as modi�cations of the half
disk topology.

Let X be a space equipped with two topologies τ and ρ. Denote by
X̂(τ, ρ) the space whose underlying set is X× [0, 1] topologized as follows.
The topology on X × (0, 1] is the product topology of τ and the usual
metric topology on (0, 1]. Neighborhoods of 〈x, 0〉 are then de�ned to be
U ×{0} t V × (0, a) for U ∈ ρ and V ∈ τ with x ∈ U ∩ V , and 0 < a ≤ 1.

Lemma 3.4. Assume τ ⊂ ρ; that is, ρ is �ner than τ .

(1) If X is Hausdor� for τ (and thus for ρ), then so is X̂(τ, ρ).

(2) If X is H-closed for τ , then X̂(τ, ρ) is H-closed.

(3) X is Lindelöf for ρ if and only if X̂(τ, ρ) is Lindelöf.

(4) If X is �rst countable for both τ and ρ, then so is X̂(τ, ρ).

Proof. Denote by τ × µ the product topology of τ on X and the usual
metric topology µ on [0, 1]. Notice that the topology on X̂(τ, ρ) is �ner
than τ × µ since τ ⊂ ρ.

(1) Immediate since τ × µ is Hausdor�.
(2) A direct proof is not di�cult, but let us give a more general argu-

ment suggested by the referee. Since the property H-closed is known to
be productive (see, e.g., [22, Proposition 4.8(l)]), it follows that Z = X ×
[0, 1], with topology τ×µ, is an H-closed extension space of Y = X×(0, 1].
X̂(τ, ρ) is also an extension of Y with the same underlying set as Z and a
�ner topology. Moreover, X̂(τ, ρ) and Z have the same neighborhood �l-
ter trace on Y in the sense of [22, De�nition 7.1(a)]. Then [22, Proposition
7.1(h) and (i)] imply that X̂(τ, ρ) is H-closed.

(3) The necessity is obvious since X with the topology ρ is a closed
subspace of X̂(τ, ρ). For the su�ciency, assume that X is Lindelöf for ρ.
Then X is Lindelöf for τ as well. Since X × (0, 1] with topology τ × µ is
the product of a Lindelöf space and a σ-compact space, it is Lindelöf. It
follows that X̂(τ, ρ) = X × {0} ∪X × (0, 1] is Lindelöf.

(4) Straightforward: a neighborhood basis for 〈x, 0〉 is given by {Un ×
{0} t Vm× (0, 1/`) : `,m, n ∈ ω, ` > 0}, where Un and Vn are local bases
for x in the ρ and τ topologies. �

Notice that in most cases X̂(τ, ρ) is not regular.

Proposition 3.5. The following hold.
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(1) There are Hausdor� H-closed spaces of arbitrarily high Lindelöf
number.

(2) There is a Hausdor� non-compact �rst countable space satisfying
Ufin

(
O,∆

)
.

(3) There is a �rst countable Lindelöf H-closed Hausdor� space which
does not satisfy Ufin

(
O,O

)
.

Proof. The three examples are of the form X̂(τ, ρ); Hausdor�ness, H-
closedness, Lindelöfness, and �rst countability in (2) and (3) all follow
from Lemma 3.4.

(1) This is well known, but let us give an example anyway. Take X to
be the ordinal κ+ 1, τ the order topology (which makes it compact), and
ρ the discrete topology. Then L(X̂(τ, ρ)) = κ.

(2) Take κ = ω in (1). Then for each α ∈ ω + 1, {α} × [0, 1] is
homeomorphic to [0, 1], so X̂(τ, ρ) is a σ-compact space and thus satis�es
Ufin

(
O,O

)
. We apply Lemma 3.2 to obtain Ufin

(
O,∆

)
. Of course, ω+1

is �rst countable in the order topology.

(3) Take X to be [0, 1] and τ its usual topology, while ρ is the coarsest
re�ning of τ that makes Q∩ [0, 1] clopen and discrete. Thus, a ρ-open set
is the union of (i) some subset of Q and (ii) U − Q with U open for the
usual topology. Denote as usual the irrational numbers by P. It is well
known that P ∩ [0, 1] is homeomorphic to the product space ωω and does
not satisfy Ufin

(
O,O

)
. Indeed, �x a homeomorphism h : ωω → P∩ [0, 1].

One way to easily obtain a sequence 〈Un〉 of covers of P ∩ [0, 1] violating
Ufin

(
O,O

)
is to set Un = {h(π−1n ({m})) : m ∈ ω} where πn is the

projection on the nth coordinate. Then the sequence of covers Wn =

{(U ∪ (Q∩ [0, 1]))×{0}t [0, 1]× (0, 1] : U ∈ Un} shows that X̂(τ, ρ) does
not satisfy Ufin

(
O,O

)
. �

3.2. The property Ufin
(
∆,O

)
.

We denote by ∆1 the collection of open covers with at least one dense
member. First, some easy facts.

Lemma 3.6. Let X be a space. The items below are equivalent:

(a) X satis�es Ufin
(
∆,O

)
;

(b) X satis�es Ufin
(
∆,∆

)
;

(c) X satis�es Ufin
(
∆1,O

)
;

(d) any closed subset of X satis�es Ufin
(
∆,O

)
;

(e) any closed nowhere dense subset of X satis�es Ufin
(
O,O

)
.

Proof. (c) → (a) ↔ (b) are immediate, and (d) → (a) as well.
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(a) → (d) Let Y ⊂ X be closed. Any od-cover of Y yields an od-cover
of X by taking the union of the members with X − Y , and the result
follows.

(a) → (e) Let Y ⊂ X be closed and nowhere dense. If Y does not
satisfy Ufin

(
O,O

)
, take a sequence of covers 〈Un〉 witnessing this fact.

Set Vn = {U ∪ (X −Y ) : U ∈ Un}. Then 〈Vn〉 witnesses that X does not
satisfy Ufin

(
∆,O

)
.

(e)→ (c) Let 〈Un〉 be a sequence of covers of X (n ∈ ω) such that some
U ∈ U0 is dense in X. Set F0 = {U}. Since X −U is closed and nowhere
dense, there are �nite Fn ⊂ Un, n ≥ 1, such that

⋃
n≥1 ∪Fn ⊃ X − U .

Then
⋃
n≥0 ∪Fn = X. �

The following proposition settles most of the classical cases (such as
sets of reals).

Proposition 3.7. Let X be a separable space. Then X satis�es Ufin
(
O,O

)
if and only if X satis�es Ufin

(
∆,O

)
.

Proof. One direction is trivial, so let us assume thatX satis�es Ufin
(
∆,O

)
.

Let D = {di : i ∈ ω} be dense in X. Given a sequence of open covers
〈Ui : i ∈ ω〉, take V2i ∈ U2i containing di and set F2i = {V2i}. Since
V = ∪i∈ωV2i contains D, X−V is closed and nowhere dense and satis�es
Ufin

(
O,O

)
by Lemma 3.6. Hence, there are �nite F2i+1 ⊂ U2i+1 such

that
⋃
i∈ω ∪F2i+1 ⊃ X − V . Then

⋃
i∈ω ∪Fi = X. �

Of course, od-compact spaces trivially satisfy Ufin
(
∆,O

)
. Any non-

Lindelöf such space (for instance, an uncountable discrete space) is a
trivial example of a space satisfying Ufin

(
∆,O

)
but not Ufin

(
O,O

)
. But

we do not know the answer to the following question.

Question 3.8. Is there a Lindelöf non-od-compact space satisfying
Ufin

(
∆,O

)
but not Ufin

(
O,O

)
?

The following question was inspired by Theorem 3.1.

Question 3.9. Let X be a space and D ⊂ X be the subspace of its iso-
lated points. Does the following equivalence hold: X satis�es Ufin

(
∆,O

)
←→ X −D satis�es Ufin

(
O,O

)
?
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