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ABsTrACT. In articles by M. Davis, T. Januskiewicz, and R. Scott
(see Nonpositive curvature of blow-ups, Selecta Math. (N.S.) 4
(1998), no. 4, 491-547 and Fundamental groups of blow-ups, Adv.
Math. 177 (2003), no. 1, 115-179) and another article by Richard
Scott (see Right-angled mock reflection and mock Artin groups,
Trans. Amer. Math. Soc. 860 (2008), no. 8, 4189-4210), a gen-
eralization of right-angled Coxeter groups, so-called right-angled
mock reflection groups (RAMRGS), are introduced and explored.
As is the case with Coxeter groups, these groups can be defined by
a finite simple graph (one that is now “decorated” in the language
of Colin Hagemeyer and Richard Scott in On groups with Cayley
graph isomorphic to a cube [Comm. Algebra 42 (2014), no. 4,
1484-1495]), and they act on CAT(0) cubical complexes such that
the stabilizer of every edge is Zz and the 1-skeleton of the link of
every vertex is isomorphic to the defining graph. This note exam-
ines the case where the defining graph I' is homeomorphic to S!,
and thus the corresponding cubical complex ¥ is a 2-manifold. We
show, explicitly, that these RAMRGSs are virtually torsion-free and
we describe the resulting quotient surfaces.

1. INTRODUCTION

Let ' be a finite, simple graph with vertex set S. I' encodes the data
for a presentation of a right-angled Cozeter group (RACG) Wr:

Wr = (S| s*=1for each s € S and (st)*> = 1 for each edge {s,t} of T').
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If two vertices s and ¢ are not connected by an edge in T', then their
product has infinite order and they generate the infinite dihedral group.
Any clique of size m in I' defines a subgroup isomorphic to Z3*. The
pair (Wr,S) ((W,S) when the graph T is clear) is called a Cozeter sys-
tem. Note that the correspondence between a Coxeter system and a sim-
ple graph is often taken in reverse, beginning with some Coxeter system
(W, S), whose presentation defines a simplicial complex L called the nerve
of (W, S), where vertex sets of simplices correspond to subsets of genera-
tors that generate finite subgroups. The 1-skeleton of L then encodes the
presentation for (W, S) as described above.

In several papers, Michael W. Davis describes a construction which
associates with any Coxeter system (W, S), a simplicial complex X(W, .5),
or simply 3 when the Coxeter system is clear, on which W acts properly
and cocompactly. The complex ¥ is referred to as the Davis complez.
(For a full description of 3, see, for example, [2] by Davis and [6] by Davis
and G. Moussong.) It is proven by Moussong [12] that, with a suitable
piecewise-Euclidean metric, ¥ is CAT(0). The other salient features of
Y are that (1) it is contractible, and (2) that it admits a cellulation,
called the Cozeter cellulation for which the link of each vertex is L. Tt
follows from (2), that if L is a triangulation of S*~1, ¥ is an n-dimensional
manifold. In this case, if G is a torsion-free subgroup of finite-index in
W, then G acts freely on 3, and X/G is a finite complex. By (1), ¥/G
is aspherical. Hence, if L is homeomorphic to an (n — 1)-sphere, Davis’s
construction gives examples of closed aspherical n-manifolds. See [3] for
a complete description of Coxeter systems and their nerves. Of particular
note here is that when W is right-angled, the Coxeter cellulation is cubical,
and with respect to this cellulation, W acts transitively on the vertex set of
3 and the stabilizer of each edge is isomorphic to Zy. We also remark that
in the right-angled case, Moussong’s CAT(0) result is Gromov’s Lemma:
A cube complex is CAT(0) if and only if the link of every vertex is a
flag complex. (See [9, p. 120]. Recall that a simplicial complex is a flag
complex if whenever the 1-skeleton of a simplex is in the complex, then
so is the entire simplex.)

In [4] and [5], Davis, T. Januszkiewicz, and R. Scott observe that cer-
tain CAT(0) complexes arising from “blow-ups” of real hyperplane ar-
rangements also have the features similar to those of RACGs described
above. There is a “mock reflection group” acting simply-transitively on
the vertex set and edge-stabilizers are isomorphic to Zs. In [15], Scott
puts a combinatorial description to a special class of these groups, called
right-angled mock reflection groups (RAMRGs). As in the case with
right-angled Coxeter groups, the presentations of these RAMRGS can be
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defined from the combinatorics of a finite, simple graph I'; but with “local
involutions” encoded on the vertex set. Such a graph is called a right-
angled mock reflection system (RAMRS). In fact, in [15], Scott shows that
for any RAMRS T, with vertex set S, there exists a CAT(0) cube com-
plex (") and a group W (T") such that (1) the 1-skeleton of %(T") can be
identified with the Cayley graph of W(T') with respect to the generating
set S, and (2) W(I") acts simply-transitively on the vertex set of ¥(I"),
and has edge-stabilizers isomorphic to Z.

In [5], the authors describe a linear representation for mock reflection
groups, but are not able to establish whether it is faithful or not; thus, the
linearity of RAMRGSs remains an open question. By Selberg’s Lemma, a
finitely generated linear group is virtually torsion-free (i.e., has a finite-
index torsion-free subgroup); thus, a weaker form of the linearity question
for RAMRGS is whether they are virtually torsion-free. This paper is
part of ongoing work to answer that question in general, that is, proving
that arbitrary RAMRGs are virtually torsion-free. It is shown by J. Tits
[16] that every Coxeter group has a faithful linear representation, and
thus is virtually torsion-free. A direct proof that RACGs are virtually
torsion-free is straightforward, as the kernel of the map from W to its
abelianization is a finite-index, torsion-free subgroup.

We employ a similar strategy in §3, though a general proof of the re-
sult for RAMRGSs has remained elusive. This paper reflects some of the
preliminary work in this direction with the main purpose being to iden-
tify finite-index torsion-free subgroups for those RAMRGs whose defining
right-angled mock reflection systems are homeomorphic to S'. That is,
we prove the following.

Main Theorem 1.1. IfT" is a RAMRS homeomorphic to S', then the
group W(T') is virtually torsion-free. In particular, if T is an n-gon, then
W(T') contains a torsion-free subgroup of index 2, 4, or 8.

In the proof of Theorem 1.1, we specifically investigate the surfaces
resulting from these torsion-free subgroups. Indeed, by recognizing a fun-
damental chamber of the action of W(I') on X(I'), we use the orbihedral
Euler characteristic to classify the surfaces resulting from the action of
these finite-index, torsion-free subgroups.

2. COXETER GROUPS AND RAMRGS

We begin with a description of ¥ in the RACG case. Let I' denote
a finite simple graph with vertex set S and edges {r,s} for some pairs
r,s € S. We can define a Coxeter group Wt (or simply W, when the
graph T is clear) by the presentation:

Wr=(S|s*=1forall s€S,(rs)®> =1 for all edges {r,s}).
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Let L denote the flag completion of I" (i.e., the simplicial complex
obtained from L by including any subset 7" C S as a simplex whenever
the elements of T are pairwise joined by edges). We let S denote the
poset of simplices of L. For each full subcomplex A of L, let W, denote
the subgroup of W generated by the vertex set of A. Such a subgroup is
called a special subgroup. Note that for each simplex o € S, W,, is finite.
A spherical coset in W is a coset of the form wW, for some o € S and
w € W. The set of all spherical cosets we denote by WS. It is partially
ordered by inclusion. The space ¥ is defined as the geometric realization
of the poset WS. This is the Davis complex. The natural W-action on
WS induces a proper simplicial action on 3. Let K denote the geometric
realization of S. K includes naturally into ¥, and K is the fundamental
chamber for the action of W on X.

2.1. THE CUBICAL CELLULATION OF .

Let o be a k-simplex of L, with vertex set T (the empty set taken
to be a (—1)-simplex). The group W, = (Z)k*!, and ¥, = [-1,1]*+1.
W, acts simply-transitively on the vertices of X, and for each w € W,
the subcomplex w¥, of ¥ is homeomorphic to [—1,1]**!. This gives a
decomposition of ¥ into a family of cubical subcomplexes {w%, }w, ews-
Thus, ¥ has the structure of a regular CW-complex in which each cell
is a cube. There is a 0-dimensional cube (vertex) for each element of W
(cosets in W/{1}), and a set of such O-cubes is the vertex set of a (k+1)-
cube wd, if and only if it is the set of elements in the spherical coset
wW,. We call the cells corresponding to the spherical cosets of W, cubes
of type T. With respect to this cubical structure, the action of W on X is
simply-transitive on the vertices (0-cubes), and the stabilizer of each edge
is isomorphic to Zs. Moreover, with respect to this cubical structure, the
link of each vertex of ¥ is L.

Example 2.1. Let ' = L = a 6-gon. Figure 1 gives a representation of ¥
in the unit disk model of H?. ¥ is an infinite complex, and here we show
six 2-cubes of the resulting cubical structure. K is the region enclosed by
the six dotted lines, and the action can be understood geometrically as
reflections over each of the dotted lines. One can see that the action is
simply-transitive on the O-cubes and the edge-stabilizers are isomorphic
to Zs. Note that the full simplicial decomposition is not shown.

For more reference on the Davis construction for RACGs, see [3], [7],
[13], and [14]. The moral here is that each RACG acts geometrically on
a CAT(0) cubical complex simply-transitively on vertices and with edge-
stabilizers isomorphic to Zs. These ideas are generalized in the notion of
RAMRGs.
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FIGURE 1. ¥ >~ H?

Definition 2.2. A group G is a right-angled mock reflection group
(RAMRG) if it acts isometrically and cellularly on a connected CAT(0)-
cubical complex X such that the action is simply-transitive on the O-
skeleton, and the stabilizer of every edge is isomorphic to Zs.

The main theme of the first half of [15] is how to encode the presen-
tations of RAMRGS in a finite simple graph. Citing relevant results from
[15], we outline that argument here.

Let I" be a simple graph with vertex set V. For each v € V, let ',
denote the induced subgraph on the neighbors of v, and let j, : T, = T,
be an automorphism so that (j,)? = identity map on I',. We call j,
a local involution. We illustrate this data by drawing the graph I' with
some edges at a vertex paired; that is, we connect two edges {u,v} and
{v,v'} by an arc at the vertex v whenever j,(u) = u'. It is clear that
each involution j, preserves adjacency to v. We call a graph I' with arcs
denoting local involutions a graph with local involutions.

Note that it is NOT the case that any graph, with arcs pairing any
two edges at any vertex, defines a graph with local involutions. Indeed,
consider the graph in Figure 2. Here, I', is shown on the right, and a
transposition of vertices ¢ and a does not define a graph automorphism. So
when we say a given I is a graph with local involutions, we will understand
that at a given vertex v, the maps j, defined by the indicated arcs do, in
fact, define automorphisms of T',,.
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FIGURE 2. Involution a <+ ¢ not defined.

2.2. T' 1S 4-PERIODIC.

Any pair u and v of adjacent vertices in a graph I" with local involutions
determines a sequence 7(u,v) = vg,v1,vg,... where vy = u, v; = v, and
Vkt1 = Ju, (Vp—1) for k& > 1. We call 7(u,v) a trajectory. We say I' is
4-periodic if for every trajectory, v, = v, 44 for all n > 0. This results in
the following partition of the edges of I'. Note that in the case I' has no
arcs, all involutions j are trivial and so each trajectory is 2-periodic, i.e.,
of the form w,v,u,v,u,v,..., and therefore also 4-periodic.

RAMRG Result 1. If I is a 4-periodic graph with local involutions,
then the edges of I' can be partitioned into sets of three types:

e a single edge (i.e., the local involution at each endpoint fizes the
other endpoint),

e two edges paired by an arc at a shared vertex, or

o 4d-cycles of edges paired by arcs in cyclic order.

We call an instance of one of the above sets in a graph I'" with local
involutions an edge-set of I" and call it a 1-, 2- or 4-edge-set, respectively.
The different types of edge-sets are shown in Figure 3.

Example 2.3. Figure 4 shows an example of a graph I' with local in-
volutions and five vertices. There are three trajectories (up to cyclic
permutation):

® a,c,a,c,...;

® a,ece,.. .

e a,bcd,....
These are all 4-periodic, and they correspond to a 1-, 2-, and 4-edge set,
respectively, in the edge-set partition of ' in Figure 3.
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FIGURE 3. Edge-sets of I

FI1GURE 4. A 4-periodic graph T.

2.3. THE PRESENTATION OF W(T').

Now suppose I is a 4-periodic graph with local involutions and with
vertex set V. We use the data described above to define a group, W (T').
First, let F(V) denote the free group on V. Next, for each vertex wu,
define 7(u,u) = u?. Finally, for each edge-set, select an edge {u,v} in the
edge-set and define the element r(u,v) € F(V) by

r(u,v) = wvu'v', where u' = j,(u) and v' = j,/ (v).

Then define W(I') as the group generated by V' with relations r(u,v).
It is clear that every generator has order 2 and that for any two edges
{u,v} and {w, z} in a given edge-set, the relation r(u, v) can be obtained
from r(w, z) by cyclically permuting letters and taking inverses. Hence,
the group W(I') (up to isomorphism) is independent of the choice of
edge within an edge-set. Specifically, we have the different types of edge-
sets determining different types of relators. Indeed, 1-edge-sets produce
relators of the form 7(a,c) = acac where a and ¢ are vertices of an edge,
2-edge-sets produce relators of the form r(a,e) = aece when j.(a) = ¢,
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and lastly, 4-edge-sets produce relators of the form r(a,b) = abed where
a, b, ¢, and d are the vertices of the edge-set read cyclically.

Example 2.4. The presentation for W(I") for Example 2.3 is

<a,b,c,d,e|a2:b2262:d2262:1, acac = 1, aece =1, abcd:1>.

2.4. PARALLEL TRANSPORT AND HOLONOMY.

The idea is for the presentation described above to define a RAMRG;
that is, it must act vertex transitively on a CAT(0) cubical complex.
In order to ensure the CAT(0) criteria, a notion of parallel transport is
required. The combinatorial description of this property is as follows. Let
Ty denote the induced subgraph on the set of vertices adjacent to both
u and v. Given a trajectory T(u,v) = vg, V1, V2,03, ... and a vertex wy
adjacent to both u = vy and v = vy, define a sequence wy := j,, (Wr—1),
k > 1. Then, if I" is 4-periodic, the correspondence wg — w4 defines a
map ¢uy : I'yy — [yp. We call this map the holonomy, corresponding to
the pair (u,v) of adjacent vertices. We say the holonomy map is trivial if
uw(w) = w for all vertices w adjacent to both u and v.

We are now ready for the following definition.

Definition 2.5. Let I be a graph with local involutions. Then T is a
right-angled mock reflection system (RAMRS) if it is 4-periodic and all
holonomy maps are trivial.

Example 2.6. Suppose I' contains vertices a, b, ¢, d, e, where an arc at
b connects edges {a,b} and {b,c}, and an arc at d connects edges {d, c}
and {d, e}, and furthermore {b,e} and {d,a} are 1-edge-sets. See Figure
5A. Then b and d cannot be vertices of a 1-edge-set. The local involu-
tions would be defined, but the trajectory determined by the 1-edge-set
{b,d} would not define a non-trivial holonomy. Indeed, jyjajpja(c) # ¢
thus, this graph is NOT a RAMRS. Note that the holonomy condition is
satisfied by the graph in Example 2.3, so that graph is a RAMRS.

The following is the main result of [15].

RAMRG Result 2. Let T be a RAMRS. Then W(T') is a RAMRG.
That is, there exists a CAT(0) cubical complex, denoted X(T') or simply
3 when T is understood, on which W (T') acts isometrically and simply-
transitively on X0 and such that the edge-stabilizers are all isomorphic to
Zo. Moreover, the 1-skeleton of the link of each vertex of ¥ is I.
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c#a c

1

a e b

(A) The {b,d} trajectory intro- (B) The {b,d} trajectory ap-
duces non-trivial holonomy. plied to edge a.

FiGURE 5. The holonomy condition.

Example 2.7. Suppose I is the graph shown in Figure 6. Then (") is
the square complex shown, drawn in the Poincaré disk model of hyperbolic
two space, with vertices labeled according to the Cayley graph for W(T").
A fundamental chamber for the action of W(I") is shaded.

FIGURE 6. A RAMRS I' and corresponding cubical com-
plex (I).
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To understand the “trivial holonomy” condition discussed above, con-
sider the RAMRS I' in Figure 5A. By the link condition of RAMRG
Result 2, the clique {a,b,d} corresponds to a 3-cube in X(T") at the ver-
tex 1 (see Figure 5B), and the trajectory b,d, b, d, ... corresponds to the
boundary of the square at the bottom. The “holonomy sequence” ap-
plied to the vertical edge a is a, jy(a) = ¢, ja(c) = e, jp(e) = e, and
ja(e) = c¢. In order to consistently label the edges of ¥, these sequence
elements a,c, e, e, c, ... must be the labels on the vertical edges of the 3-
cube emanating from the vertices of the bottom square (see Figure 5B).
In particular, this holonomy sequence must be 4-periodic. In this case, it
is NOT. The fourth term is ¢, while the 0" term is a. Thus, there is no
well-defined label on the vertical edge at the vertex 1.

Now before proceeding into a general discussion of the construction of
Y and, in particular, a discussion of the cell-stabilizers under the action of
W(T') on X(T"), we first point out a result from [15] regarding finite mock
reflection groups.

RAMRG Result 3. Let I be a RAMRS with associated RAMRG W =
W(T) and associated CAT(0) cubical complex ¥ = X(T"). Then the fol-
lowing are equivalent:

(1) W is finite.

(2) T is a complete graph.

(3) X is a cube.

2.5. THE sPACE X(I).

Given a RAMRS T and taking the existence of X(T") from RAMRG
Result 2, we now make some observations about its structure. Now, the
cellulation of X(I") is completely analogous to the Coxeter cellulation of
the Davis complex in the case W is a Coxeter group. Note that with
respect to this cellulation, the 1-skeleton of the Davis complex is iso-
morphic to the Cayley graph of W, and the cells of ¥ are in one-to-one
correspondence with the cosets of the subgroups generated by the cliques
of T' (see [3, Proposition 7.3.4].) Moreover, under the action of W, the
cell-stabilizers correspond to conjugates of spherical subgroups generated
by the vertices of the corresponding clique.

In our more general case, we again have that the 1-skeleton of %(T")
corresponds to the Cayley graph of W(T'). Indeed, identify a vertex v
with the identity 1 in W(T'). Then for each s € S, label the edge from
1 to s - v with s. Then use the transitivity of the action to extend this
labeling to all of ¥. Thus, any two adjacent vertices are of the form w
and ws where s is the label on the edge that connects the two. Thus, for
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simplicity of notation, we equate the vertices of ¥ with group elements of
W and the vertices of I' with the generators of W.

The link condition and the transitivity of the action on vertices means
that, as in the RACG case, we can again classify the cubes of X(T") into
types. Indeed, since the link of the vertex 1 in X(T') is ', any n-clique T
in I" corresponds to the edges of an n-cube that are incident to the vertex
1 in 3(T"). The CAT(0) condition means that this cube must, in fact, be
an n-cell of 3(I') (filled in). We call this a cube of type T and realize that
because of the transitive action on vertices, a cube of type T is actually
present at every vertex.

Regarding cell-stabilizers, observe that by the action of W(I') on its
Cayley graph, we see immediately that the stabilizers of vertices are trivial
and the edge {w,ws} is stabilized by wWw ™1, where W, = {1, s} is the
subgroup generated by some generator s. This is all that is required in
the definition of a RAMRG: that it act on a cubical complex with edge-
stabilizers isomorphic to Z,. But, whereas the stabilizers of cubes of
type T of the Davis complex corresponding to a RACG are conjugates of
(finite) subgroups generated by the vertices of T, the higher dimensional
cells of W(I') do not carry this exact relationship between cell type and
cell-stabilizers.

Now, the significance of RAMRG Result 3, is that cells of type T for
which T is itself a RAMRS have stabilizers conjugate to the subgroup
W(T') of W(I') generated by the vertices of T. However, while every cube
of ¥(T") must correspond to a complete subgraph of T', the group struc-
ture of W (T") resulting from the local involutions means that (appropriate
conjugates of) the cell-stabilizers may not be generated by the vertices of
the clique corresponding to the cube. Indeed, consider the RAMRS I and
CAT(0) complex ¥ depicted in Figure 6 and discussed in Example 2.7.
The cell spanned by the edges {1,a} and {1, b} corresponds to the edge
{a,b} in T, but b does not stabilize this square. In this example, we say
the complete subgraph of I' spanned by the edges a and b is not “closed
under edge-set decomposition.” More generally, we say a subgraph IV C T’
is closed under edge-set decomposition if whenever {x,y} is an edge in I",
then all of the edges in the edge-set containing {z,y} are contained in I".

So, regarding cell-stabilizers, if we are given a cell o of ¥(T") containing
the vertex 1 and corresponding to a complete subgraph 7" of T, if T is not
closed under edge-set decomposition, then there exists a generator s € T
that doesn’t stabilize 0. Indeed, the example above generalizes to the case
that T contains the edge {a,b} of a 2- or 4-edge-set, but does not include
the edge {b, c}, where, in T, there is an arc at b from {a, b} to {b, c}. This
means that the square o’ spanned by the edges {1,a} and {1,b} in X(T)



150 R. SCOTT AND T. SCHROEDER

is a face of o, but b- o', which is the square in X(I") spanned by the edges
{1,¢} and {1,b}, is not. So b is not in the stabilizer of o.

The following lemma describes the cell-stabilizers of 2-cells of X(T").

Lemma 2.8. Let o be a 2-cell of type T = {a,b}. Then the stabilizer of
o in W(T) is gHg™!, where either
(i) H =1, if{a,b} is part of a 4-edge-set {a, b}, {b, c},{c,d}, and {d,a},
(ii) H = (a) = Zy if {a,b} is part of the 2-edge-set {a, b}, {b,c}, or
(iil) H = (a,b) = Zy @ Zo if there are no arcs at a or b connecting the
edge {a,b} to some other edge of T.

Proof. By considering g~! - o, where g is a group element corresponding

to some vertex of o, we can, without loss of generality, consider o to be a
cube containing the vertex 1. Because of this, any group element w which
is not a vertex of o cannot stabilize o, since w - 0 must contain the vertex
w. So we need only to check group elements/vertices of o.

In (i), o has vertex set {1,a,b,ad = bc}. Then a - o has vertex set
{a,1,ab = dc,d}, so a- o # o. Similarly, b- o # 0. ad - o has vertex set
{ad, ada, adb, adad}, which shows ad - o # o.

In (ii), o has vertex set {1,a,b,ab = bc}, and a - o has vertex set
{a,1,ab = be, b}, s0 a-0 = . But b-o has vertex set {b,ba = ¢b, 1, ¢} # o.
Similarly, ab - o has vertex set {ab, aba, a,ac}, so ab- o # 0.

In (iii), o has vertex set {1,a,b,ab = ba}, and all of a, b, and ab = ba
fix the cell o. This is the usual Coxeter group action Zs @ Zso on the 2-cell
0. (|

Similar observations can be made for higher dimensional cells, where
to find the cell-stabilizer of o corresponding to the complete subgraph T
of T', one considers vertices of T' that either do not have arcs or whose
arcs connect two edges of T'.

2.6. A SIMPLICIAL AND CELLULAR DECOMPOSITION OF Y.

We now demonstrate two different cellulations of 3 that enable us
to realize a cellulation of a fundamental chamber of the action of W on
3. Let ' be a RAMRS and let ¥ be the corresponding cubical complex.
We can obtain a finer cellulation of ¥ as follows. As above, let 1 denote
the vertex of X corresponding to the identity of the Cayley graph for W.
The cubes containing 1 are in one-to-one correspondence with complete
subgraphs of I' that are themselves RAMRS’s, i.e., subsets of vertices
of T". Refer to these subsets as spherical subsets and let S denote the
poset of such subsets. Let K = |S| denote the geometric realization of
S. For T € S, by identifying T as the barycenter of the corresponding
cube in ¥, we can view K C ¥, and we thus obtain a partial simplicial
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decomposition of the cubes containing 1. This simplicial decomposition
extends to a decomposition of ¥ via the action of W on X. That is, we
identify w-T as the barycenter of the cube corresponding to the complete
subgraph T containing the vertex w and extend linearly. We write XA to
denote ¥ equipped with this simplicial decomposition. It is clear that K
is a fundamental chamber of the action of W on X a.

Now if L, the flag completion of the RAMRS T, is a triangulation of
an (n — 1)-sphere, then, for each T' € S, let K¢ denote the geometric
realization of the subposet S>7. Kr is then the triangulation of a k-cell,
where k = n—|T|. We then define a new cell structure of K, and therefore
on Y a (or X), by declaring the family { K7 }res to be the set of cells in K.
For each generator v, we will let K,, denote K,y and call it the v-mirror
of K := Ky. For any w € W(T'), we will denote by wK7r the w-translate
of the cell Kr. To indicate ¥ equipped with this cellulation, we write
Y k- The simplicial triangulation of ¥ A is a subdivision of both ¥ and
3 with the cubical cellulation.

In particular, if I' = L an n-gon, n > 4, K = Ky is itself a 2-disk
with the cell structure of an n-gon: one 2-cell, n 1-cells, or mirrors, each
corresponding to a vertex of I', and n O-cells, each corresponding to an
edge of I'. Note that Y is “tiled” by K, and K is the fundamental
chamber for the action of W on Y. But, as we will see below, K is not
/W unless W (T') is itself a RACG.

2.7. THE ORBIHEDRAL EULER CHARACTERISTIC.

If a group G acts on a complex X, then the orbihedral Euler charac-

teristic of X/G is the rational number
-1 dim o
e/ = Y S

where the sum is over the cells of X/G and G, is the stabilizer in G of
o. (See [3] or [8].) Note that (1) the orbihedral Euler characteristic is the
usual Euler characteristic in the case all cell-stabilizers are trivial and (2)
the orbihedral Euler characteristic is multiplicative. That is, if H < G of
index m, then

(2.1) X (X/H) = mx*™(X/G).

Also recall that surfaces are uniquely determined by their Euler char-
acteristic. Indeed, orientable surfaces of genus g have y = 2 — 2¢g and
non-orientable surfaces have y = 2 — g. (The non-orientable genus is
defined to be the number of crosscaps attached to a sphere in order to
obtain the desired surface. See [11] and Figure 8 below.)
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We apply this to the space X under the action of the RAMRG W =
W(T'), in the case I' is a n-gon. First, note that if I contains no arcs,
then g /W = K and

n o n n
=173 +1=1 1
Otherwise, X /W # K. Indeed, if a vertex u has an arc connecting
edges {u,v} and {u,w} in T, then endpoints of the u-mirror are identified
Yk /W (these endpoints corresponding to the 2-cells {u, v} and {u,w} in
¥), and we introduce a new vertex in the interior of the u-mirror, splitting
the original edge of K into two “half-edges.” In Yy /W these two half-
edges are identified with trivial stabilizer. The stabilizer of the introduced
vertex is Zsq, corresponding to the involution u, and the stabilizer of the
identified vertices is Zs (from either W, or W,,, which are conjugate in

Thus, working from no arcs, we can obtain I' by cyclically introducing
arcs at the appropriate vertices. Each introduction of an arc adjusts x°™
in the following ways:

X (/W)

o —1 141 Two vertices with stabilizer Zy x Z are identified,
with stabilizer Zs.

° +% -1+ %: An edge with stabilizer Zs has been replaced by
a half-edge, with trivial stabilizer, but a vertex has been added,
with stabilizer Zs.

Thus, the addition of an arc makes no change on the orbihedral Euler
characteristic. As a result, if I" is an n-gon, then

(2.2) P (S/W) =1 — g.

3. RIGHT-ANGLED MoOCK REFLECTION SURFACES

As stated in §1, the purpose of this paper is to identify finite-index
torsion-free subgroups of RAMRGS acting on 2-manifolds, with predictable
index. The general idea is to map the given group W = W(T') to a finite
group G, under which the cell-stabilizers inject. The kernel of this map
is a finite-index torsion-free subgroup. Indeed, if f : W — G is such map
and w € Ker(f) has finite order, then w is contained in a finite subgroup
W' of W. The action of W’ on X must have a fixed point, call it x (by
[1, Part II, Corollary 2.8]). Let D denote the cube of lowest dimension
in ¥ that contains x. Since the action of W’ on X is cellular, we must
have that W’ fixes the cube D, and therefore W’ injects under f. Thus,
since w € Ker(f), w must be the identity in W. So Ker(f) is torsion-free.
Moreover, since Ker(f) is finite-index, Ker(f) acts on ¥ with resulting
quotient space ¥/ Ker(f) a compact surface.
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We seek out such maps when I' is an n-gon. But we begin with some
observations. First, there may be many maps to finite groups that fit the
criteria described above, but when given the opportunity, we will define
a map to as small a group as possible (thus resulting in a surface with
as small as genus as possible). Second, note that by edge decomposition,
successive vertices cannot have arcs unless I itself is a 4-gon with arcs
at each vertex; that is, I is itself a 4-edge-set. Third, we can disregard
I' a 3-gon, since in this case W has order 8 and X is cube (a 3-manifold
with boundary). Finally, as discussed above, in order for the kernel to be
torsion-free, we need all cell-stabilizers to inject under our map. Referring
to the cubical cellulation of 3(I") = X, we note that the stabilizers of the
0-cells are trivial, so there is nothing to check there. The edge-stabilizers
are conjugate to subgroups generated by vertices of I, so as long as in-
dividual generators have non-trivial image, edge-stabilizers inject. This
will be clear from the definitions of our maps. Thus, our focus will be on
verifying that the stabilizers of the 2-cells of ¥ inject, which, by Lemma
2.8, amounts to verifying that the dihedral group of order 4 generated by
the vertices of 1-edge-sets inject.

We are now ready to prove our Main Theorem. In doing so, we will
not only identify a finite-index torsion-free subgroup, but also identify the
genus of the resulting surface ¥ /Ker(f).

Theorem 3.1. Let T be an n-gon. Then W(T') is virtually torsion-free.

Proof. By edge-set decomposition, we have five cases to consider:
Case 1. I' is a 4-edge-set
Case 2. n is even and I" has arcs on every other vertex
Case 3. n-even, I' is not as in 2
Case 4. n is odd and I is the graph in Figure 11
Case 5. n is odd, and I' is not as in Figure 11.

Throughout this section, we will denote Z5 as the binary group {0,1},
and we note that in order to show the resulting surface is non-orientable,
it suffices to identify a Mobius strip embedded in the surface. Finally,
in our images, for a given generator v, we indicate the v-mirror K, of K
simply with the letter v.

Case 1: T'is a 4-edge-set. Let I' have vertices r,s,t,u. By Lemma
2.8, the 2-cells of ¥ have trivial stabilizers, so we need only to verify the
edge-stabilizers inject.

Indeed, define f: W(T') — Zs by f(r) = f(s) = f(t) = f(u) = 1. Tt is
clear that each generator injects, so Ker(f) is a torsion-free subgroup of
index 2. Thus, 2y°™(2/W) = x°*™®(2/ Ker(f)) = x(X/ Ker(f)), the usual
Euler characteristic. But by Equation 2.2, we have that y°™(X/W) =
1—4 =0. So ¥/Ker(f) is a genus 0 surface. In fact it is orientable and
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is a torus, as we see in Figure 7. Here, with K denoting the fundamental
chamber of ¥ and the action of the generators of W on ¥ given by 180°
rotations around the midpoint of each edge of K, we have K and sK
making up the space ¥/ Ker(f). The three identifications are given by
elements of the kernel su, sr, and st with one, two, and three arrows,
respectively.

.
U s
t
>T> >>>
w) K g sK A  —
>>t> > >

FIGURE 7. Case 1: I' a 4-edge-set

Case 2: n is even, and T has n/2 arcs. By edge-set decomposition, T
has an arc at every other vertex. So each 2-cell of ¥ is of type {v,w}
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where {v,w} is edge of a 2-edge-set. By Lemma 2.8, the 2-cells of ¥ have
stabilizers conjugate to W, for some generator v, and so our target group
only needs to contain a subgroup isomorphic to Z,. Define f : W(I') — Zo
by f(v) =1 for all vertices v in I". Ker(f) is a torsion-free subgroup, and
so Xo'™*(2/Ker(f)) = x(2/Ker(f)), the usual Euler characteristic. Now
we have, from Equation 2.2, that x*™(S/W) = 1 — 2. But Ker(f) is
index 2, so by Equation 2.1, we have that

2 (B/W) = X (2/ Ker(f)) = x(2/ Kex(f)) = 2 —

|3

To see that ¥/ Ker(f) is non-orientable, number the vertices of T so
that v does not have an arc, and therefore v, does have an arc, vz does
not, etc. Then K and v;K make up the space ¥/Ker f. Moreover,
v1ve € Ker(f) and the identification of the mirror K,, with v1v2K,,
results in a Mdbius strip. So with g representing the genus of ¥/ ker(f),
we have 2 — g = 2 —n/2. Thus, X/ Ker(f) is a non-orientable surface of
genus n/2.

See Figure 8 for the case n = 6, where the identification space for the
resulting genus 3 non-orientable surface is shown.

V3 (%)

Vg U1

Us Ve

FIGURE 8. Case 2: ¥/ Ker is a genus 3, non-orientable surface.
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In the figure, the involutions vy, vy, and vg correspond to rotations of
180°; the other involutions are reflections. In the figure, the identifica-
tion of the mirror K,, with v, K,, is shown with a single arrow. Other
identifications are similar.

Case 3: nis even, I is not as in Case 2. Let vy, va, ..., v, be the vertices
of T". Since we do not have an arc at every other vertex, there must be a
1-edge-set in I'. Therefore, by Lemma 2.8, there are 2-cells of ¥ with sta-
bilizers isomorphic to Zs @ Zy. Here we have a map f : W(T') — Zs @ Zo,
where f(v;) = (1,0), where i is odd, and f(v;) = (0,1), where j is even. It
is clear that generators inject; therefore, edge-stabilizers inject. Further-
more, since the vertices of any 1-edge are mapped to different generators
of Zs & Zs, we have that the stabilizers of the 2-cells corresponding to
the 1-edge-sets inject as well. Thus, Ker(f) is a torsion-free subgroup of
index 4. So

WP (B/W) = X (B Ker(f)) = x(B/ Ker(f)) =4 —n.

If T has no arcs, we have a RACG and X/ Ker(f) is orientable. (All
identifications are annuli.) Then if g represents the genus of 3/ ker(f),
we get 2—2g =4 —n, so g=n/2— 1. See Figure 9.

V3 (%)

V4 U1

Us Ve

FIGURE 9. Case 3: ¥/ Ker(f) an orientable surface of genus 2

If ' does have an arc, but not at every other vertex, then number the
vertices so that there is not an arc at vy, is an arc at vy, and is not an
arc at v3 and vy. Then X/ Ker(f) is comprised of K, v1 K, v2K, and
v1ve K = vouz K. Moreover, vovy € Ker(f) and the identification of the
mirror K, with vyvsK,, results in a Mdbius strip. So with g representing
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the genus of ¥/ Ker(f), we have 2 — g =4 —n. Thus, 3/ Ker(f) is a non-
orientable surface of genus n — 2. See Figure 10 for the case when n = 6,
and I" contains one arc.

U3 U2

V4 (%1

Us ]

FI1GURE 10. Case 3: ¥/ Ker is a genus 4, non-orientable
surface.

Case 4: T' is the graph in Figure 11. First note that for such a I', all
cell-stabilizers in ¥ are isomorphic to Zs except for the 2-cell spanned
by edges v; and v, which is stabilized by a Zs @ Zs-action. So we need
our target group to contain at least a subgroup isomorphic to Zo ® Zs.
But we need more than that group in this case, because, in W(T'"), we
have that v; and v3 are conjugate (by vs2), vs and vs are conjugate (by
v4), and so on. Thus, a map from W(T') to Zy @ Zs would have to send
v1,Vs3,...,U, to the same element. But then the Zs & Z5 stabilizer of the
2-cell of type {v1,v,} does not inject. So we need a target group to be
non-Abelian and to contain a subgroup isomorphic to Zs @ Zs. With this
in mind, we define a map f from W(T') to the dihedral group of order 8,
Dy={r,s|r*=s>=(rs)*=1) by

vT = T

Vg —  STS

vy — T

V4 > STrS

Vs +H— T
Up—2 T
Un—1 FH S

Up, > STS.
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Clearly, for each v;, f(v2) =1, and f(viv,v1v,) = r(srs)r(srs) = 1. The
remaining relators are all of the form vivg_1vkvE41 for even k. If k # (n—
1), we have f(vpvk_10kvp+1) = (srs)r(srs)r =1, and if k = (n — 1), we
have f(vp—1Un—20n_10y,) = s(r)s(srs) = 1. Thus, f defines a map from
W(T) onto D4. Moreover, since each generator injects and the stabilizer
of the 2-cell corresponding to vy and v, injects as Zo ®Zy = (r, srs) < Dy,
we have that Ker f is a torsion-free subgroup of W(I') of index 8. See
Figure 11.

FIGURE 11. Case 4.

Here, 3/ Ker(f) is comprised of K, v1 K, v, K, v10, K, 01 K, v1v,_1 K|
VU1 K, and v,v1v, 1 K, and x°P(3/ Ker(f)) = x(X/ Ker(f)) = 8—2n.
Finally, v,ve € Ker(f), and the identification of K,,, with v,vsK,, results
in a Mobius strip. So ¥/ Ker(f) is non-orientable and 8 —2n = 2 — g im-
plies ¥/ Ker(f) has genus 2n — 6. See Figure 12 for the case n = 5, with
V1,V F> T, Vg, Us > S8, and vy —> S.

U3

V2 Vg

U1 Us

FIGURE 12. Case 4: ¥/ Ker(f) a genus 4, non-orientable
surface.
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Case 5: n is odd, I' is not as in Figure 11. Since I is not as in Figure
11, then we can number the vertices so that there are no arcs on vq, vs,
and vy, and if there is at least one arc in I', it occurs at vo. Again, since
we have 1-edge-sets, our target group must at least contain Zy @ Zs, and
this group does, in fact, suffice. Define the map f: W(T') — Zo ® Z as
follows:

V1,V3,...,Upn—2 > (1,0)
V2, Ugy ..oy Up—1 +— (0,1)
Un ~ (1,1).

Note that the stabilizers of the 2-cells of type {v1,v,} and {v,—1,v,}
inject. It is clear that the stabilizers for the other 2-cells inject. So
Ker(f) is a torsion-free subgroup of index 4, and thus x°™(%/ Ker(f)) =
x(3/Ker(f)) = 4 — n. We can realize ¥/ Ker(f) with K, vsK, v K,
and vqvsK. Regardless if there are arcs in I' or not, we have a non-
orientable surface for vqvsv,, € Ker(f), and a Mdbius strip connects K,
with vav3v, K, (vave € Ker(f), and so if vy does have an arc, we can also
find a M&bius strip connecting K,, with v4v3K,,). So with 2—g =4—n,
we get g =n — 2. See Figure 13 for an example with n = 5, where I' has
an arc at vs.

U3

V2 Vg

U1 Us

FI1GURE 13. Case 5: ¥/ Ker(f) a genus 3, non-orientable
surface.

Note that to obtain an orientable surface, we need the corresponding
multiple of 1—n/4 to be even (for it must equal 2—2g). So to obtain an ori-
entable surface, we must have a map to a group of order at least 8. Indeed,
for Case 5 we also have a map g : W(I') — Z3 where v1,v3,...,0,_2
(1,0,0), v, v4,...,0p—1 — (0,1,0), and v, — (0,0,1). The stabilizers of



160 R. SCOTT AND T. SCHROEDER

the 2-cells clearly inject so ker(g) is a torsion-free subgroup of order 8.
We can realize ¥/ Ker(g) with K, v1 K, v, K, v1v, K, v,_1 K, v1v,_1 K,
VU1 K, and v,v1v, 1 K, and x°™(X/ Ker(g)) = x(X/ Ker(g)) = 8—2n.
If T has no arcs, we have a RACG and X/ Ker(g) is orientable (all iden-
tifications are annuli), and we get 2 —2g =8 — 2n,s0 g =n — 3. ]
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