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THE ONLY KNOT CONSTRUCTIBLE AS

A MAHAVIER PRODUCT IS THE UNKNOT

MICHAEL LOCKYER

Abstract. Mahavier products can be considered as �nite approx-
imations of the inverse limits of set-valued functions. Unlike the in-
verse limits of single-valued continuous functions, interesting struc-
tures can occur after �nitely many iterations in the set-valued case.
These structures are called Mahavier products.

A general question in the study of the inverse limits of set-
valued functions is whether a given continuum can be the Mahavier
product of bonding spaces de�ned on a particular factor space,
usually [0, 1]. In this paper we show that with the assumption
of piecewise linear bonding spaces, the only knot obtainable as a
Mahavier product on [0, 1] is the unknot.

1. Introduction

Mahavier products originate from the study of inverse limits of set-
valued functions. In contrast to inverse limits of single-valued continuous
functions, when using set-valued functions interesting non-trivial struc-
tures can appear before reaching the �limit,� i.e., after �nitely many steps.
These �nite approximations of inverse limits of set-valued functions are
called Mahavier products (they will be de�ned more rigorously in �2).

One of the general problems in the study of inverse limits of set-valued
functions is whether a given continuum can be obtained as the inverse
limit of set-valued functions on [0, 1] (either with a single bonding function
or allowing for di�erent bonding functions). These are Problem 6.57 and
Problem 6.59 in [4]. Some examples of results relating to these problems
are in [3], where Alejandro Illanes shows that the circle is not obtainable
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as an inverse limit (with a single bonding function on [0, 1]), and in [10],
where Van Nall shows that the only �nite graph obtainable as an inverse
limit (with a single bonding function on [0, 1]) is an arc.

Due to the nontrivial nature of the �nite Mahavier products, this prob-
lem can be extended to whether a given continuum can be obtainable as a
Mahavier product. In this paper we consider the question of which knots
can be obtained as Mahavier products. Because every knot is equivalent
to the unknot when embedded in dimensions greater than 3, we will only
consider the Mahavier product of two bonding spaces, so the Mahavier
product is embedded in 3-space (speci�cally [0, 1]3). We also restrict the
knots to be piecewise linear, i.e., consisting of �nitely many straight lines.
The reason for this is discussed in �4.

The main result of this paper is that any non-trivial knot is not ob-
tainable as a Mahavier product of intervals. The intuitive reason for this
is that the projection of any nontrivial knot in [0, 1]3 will have cross-
ings which will need to be represented on the bonding spaces, but the
Mahavier product of these bonding spaces will not be able to recreate
the knot. This speci�c example highlights one of the key features in the
structure of Mahavier products and is discussed in �4.

In �2 we start with some basic de�nitions and results in knot the-
ory that will be needed, before de�ning Mahavier products and related
concepts. We then prove some basic results needed in the next section.
Section 3 begins with a series of lemmas used to prove the main result at
the end of the section. Section 4 then discusses the main result and its
relevance.

2. Preliminaries

We begin this section with a brief introduction to knot theory. We
only require a few de�nitions and some basic facts about knots. There
are a number of (equivalent) formulations for the basic de�nitions in knot
theory; we will follow those in [6]. A curve in a space X is the image
of a continuous function f : [0, 1] → X, and a simple closed curve in X
is the image of a continuous function g : [0, 1] → X, where g(0) = g(1),
and g is injective elsewhere. Note that in this paper the subset symbol ⊂
includes the possibility of equality. A continuum is a non-empty compact,
connected metric space.

De�nition 2.1. A knot is a subset of R3 that is a piecewise linear simple
closed curve. For the purposes of this paper, we will assume that any
knot K is embedded in [0, 1]3.

Knots K1 and K2 are said to be equivalent if there exists an orientation
preserving homeomorphism h : R3 → R3 such that h(K1) = K2.
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Informally, the equivalence means K1 can be continuously deformed
into K2 without intersecting itself. The piecewise linear condition in Def-
inition 2.1 means that a knot is the union of �nitely many straight line
segments, with any intersections between the line segments occurring at
the endpoints. See �4 for more discussion on this. One special knot is the
unknot, informally, a curve that has not been �tangled.� A disc is a space
homeomorphic to a 2-simplex.

De�nition 2.2. A knot K is said to be the unknot if it bounds an em-
bedded piecewise linear disc in R3.

The Jordan curve theorem and the Schön�ies theorem can be used to
show a well-known and very useful property of the unknot, presented here
as Corollary 2.5. A proof of the Jordan curve theorem can be found in [7,
Ch. 4], and a proof of the Schön�ies theorem can be found in [7, p. 68].

Theorem 2.3 (the Jordan curve theorem). Let J be a simple closed curve
in a plane P . Then P \ J is the union of two disjoint connected sets, one
bounded set, known as the interior, and one unbounded set, known as the
exterior.

Theorem 2.4 (the Schön�ies theorem). Let J be a simple closed curve
in a plane, and let I be the interior of J . Then I is a disc.

Corollary 2.5. A knot K embedded in a (piecewise linear) plane is an
unknot.

Proof. Since K is a (piecewise linear) simple closed curve embedded in a
plane in R3, by the Jordan curve theorem, it will have an interior. Then
by the Schön�ies theorem, it will bound a (piecewise linear) disc in R3,
and hence is an unknot. �

That concludes the knot theory needed; we now move to some de�-
nitions and basic results in continuum theory. One notion that will be
important is the notion of the order of a point, which we take from [8].

De�nition 2.6. Let X be a continuum and let A ⊂ X. Let β be a
cardinal. We say that A is of order less than or equal to β in X provided
that for each open U such that A ⊂ U , there exists an open V such that
A ⊂ V ⊂ U and |Bd(V )| ≤ β.

We say that A is of order β in X, written ord(A,X) = β, provided
that A is of order less than or equal to β in X and A is not of order less
than or equal to α in X for any α < β.

Often (including all instances in this paper), the set A in the above
de�nition will be a singleton {p}. In this case, we will simply refer to the
order of p, written ord(p,X).
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An immediate observation from the de�nition is that a point p has
order 0 if and only if p is its own component. It can also be seen (with
the help of [8, Lemma 9.9]) that if a point p in a piecewise linear curve
has order n for some n < ℵ0, then p is the intersection of the endpoints
of n straight lines.

The following proposition appears as Proposition 9.5 and Corollary 9.6
in [8].

Proposition 2.7. If X is a nondegenerate continuum, then ord(x,X) ≤ 2
for all x ∈ X if and only if X is an arc or a simple closed curve. X is a
simple closed curve if and only if ord(x,X) = 2 for all x ∈ X.

De�nition 2.8. If X ⊂ Rn is a continuum, then we de�ne the band of
radius ε about X as the set of points {y ∈ Rn : d(x, y) < ε for some x ∈
X}.
Lemma 2.9. If M ⊂ [0, 1]× [0, 1] is a piecewise linear curve, then there
is an ε > 0 such that for each pair of straight lines l1 and l2 in M , the
bands of radius ε about l1 and l2 have non-empty intersection if and only
if l1 and l2 have non-empty intersection.

Proof. If a pair of lines l1 and l2 do not intersect, there is some minimum
distance d(l1, l2) = min{d(a, b) : a ∈ l1, b ∈ l2} between the points in the
lines, where d(l1, l2) > 0. Since there are only �nitely many pairs of lines,
there is some minimum distance over all these pairs ∂ > 0. Setting ε = ∂

2
will make the hypothesis work. �

The object of this paper is to show that the only knot that can be
created as a Mahavier product is the unknot. We will now de�ne the
Mahavier product and associated concepts. Mahavier products arose from
the study of inverse limits of set-valued functions, where the bonding
spaces (described below) are viewed as upper semicontinuous set-valued
functions. In this paper we view them as simply being closed subsets of
a unit square (these are equivalent formulations).

De�nition 2.10. Let I1 = I2 = [0, 1] and let G ⊂ I1 × I2 be closed. We
say that G is full if, for each x1 ∈ I1, there is a point (x1, y) ∈ G for some
y ∈ I2 and, for each x2 ∈ I2, there is a point (y, x2) ∈ G for some y ∈ I1.

There have been various formulations of a Mahavier product, for ex-
ample in [1] and [2]. The following de�nition is a special case of these
more general de�nitions and is su�cient for the purposes of this paper.

De�nition 2.11. Let n ∈ N. For 0 ≤ i ≤ n, let Ii = [0, 1], and for
1 ≤ i ≤ n, let Gi be a closed subset of Ii−1 × Ii. Then the Mahavier
product of {Gi : 1 ≤ i ≤ n}, denoted by eitherFn

i=1Gi or G1?G2?· · ·?Gn,
is the set {(x0, x1, . . . , xn) ∈ [0, 1]n+1 : for all 1 ≤ i ≤ n, (xi−1, xi) ∈ Gi}.
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In the above de�nition, the sets Ii are called factor spaces and the sets
Gi are called bonding spaces.

One important function we will use is the projection map. There are
two projection maps commonly used. In practise, when the word �projec-
tion map� is used, the context will indicate which projection map is being
referred to.

De�nition 2.12. Let K =Fn
j=1Gj be a Mahavier product. The projec-

tion of K onto the space Gi (for 1 ≤ i ≤ n) is the function πi :Fn
j=1Gj →

Gi, de�ned by πi((x0, . . . , xn)) = (xi−1, xi).
If Gi is a closed subset of Ii−1×Ii, then the projections of Gi onto Ii−1

and Ii are the functions ρi,i−1 : Gi → Ii−1 and ρi,i : Gi → Ii, de�ned by
ρi,i−1((xi−1, xi)) = xi−1, and ρi,i((xi−1, xi)) = xi.

If A ⊂ Gi, and B ⊂ Ij for some j ∈ {i − 1, i}, we say that A projects
onto B if B ⊂ ρi,j(A). We say A projects entirely onto B if B = ρi,j(A).
Note that the projection maps are continuous.

In this paper we will require Mahavier products only where n = 2. This
is because we need the knot to be a subset of 3-space. We will assume
throughout the paper that if we have a Mahavier product K = G1 ? G2,
then for all i ∈ {1, 2} and j ∈ {i − 1, i}, either ρi,j(πi(K)) = [0, 1], or
ρi,j(πi(K)) = {a} for some a ∈ [0, 1]. We will see later that if K is a non-
trivial knot, then the second case is not possible. The requirement that a
(non-degenerate) projection be [0, 1] is harmless, since if a projection is a
non-degenerate interval, we can simply rescale the knot to an equivalent
knot that projects entirely onto [0, 1].

The following lemma is a basic fact of Mahavier products and will be
assumed for the remainder of the paper.

Lemma 2.13. Suppose that I0 = I1 = I2 = [0, 1] and that G1 ⊂ I0 × I1
and G2 ⊂ I1× I2 are piecewise linear curves. Suppose l1 is a straight line
in G1 and l2 is a straight line in G2 such that there is an open interval
U ⊂ I1 such that l1 and l2 both project onto U (in their respective spaces).
Then there is a straight line in G1 ? G2 consisting of points (x0, x1, x2),
where x1 ∈ U .

Proof. Let U = (a, b). Since l1 and l2 are straight lines and U has non-
empty interior, the projection maps onto U are injective, so the Mahavier
product will be non-empty and there will be a unique point in the Ma-
havier product for each point in l1 (also l2). Also, since l1 and l2 are
compact and the projection map is closed, we can extend the projection
to U .

To see the Mahavier product of the projections is a straight line in
G1?G2, note that G1?G2 = π−1

1 (G1)∩π−1
2 (G2) (this observation appears
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as an observation in [4, p. 9]). So if we consider the two lines l1 and l2
in their respective bonding spaces, the inverse image of each line will be
a (�at) plane (restricted to U in the I1 coordinate), so their intersection
will be a straight line. �

3. Main Result

This section starts with a few lemmas relating to Mahavier products.

De�nition 3.1. Let n ∈ N. For 0 ≤ i ≤ n, let Ii = [0, 1], and for
1 ≤ i ≤ n, let Gi be a closed subset of Ii−1 × Ii, and let K = Fn

i=1Gi

be the Mahavier product of {G1, . . . , Gn}. Let 1 ≤ j ≤ n and let
(xj−1, xj) ∈ Gj . Then we say (xj−1, xj) contributes to K if there is a
point (p0, p1, . . . , pn) ∈ K such that xj−1 = pj−1 and xj = pj .

Lemma 3.2. Let n ∈ N. For 0 ≤ i ≤ n, let Ii = [0, 1], and for 1 ≤ i ≤ n,
let Gi be a closed subset of Ii−1 × Ii, let K = Fn

i=1Gi be the Mahavier
product of {G1, . . . , Gn}, and suppose K is a continuum. Then for each
graph Gi, there is a maximum of one component that contains points that
contribute to K.

Proof. Suppose there is 1 ≤ m ≤ n such that Gm contains two compo-
nents C and D with points (cm−1, cm) ∈ C and (dm−1, dm) ∈ D, where
(cm−1, cm) and (dm−1, dm) both contribute to K. Then in Gm there
are disjoint open sets UC and UD such that C ⊂ UC , D ⊂ UD, and
UC ∪ UD = Gm.

Then since K ⊂ (([0, 1]m−1 × UC × [0, 1]n−m) ∪ ([0, 1]m−1 × UD ×
[0, 1]n−m)), and K ∩ ([0, 1]m−1 × UC × [0, 1]n−m) and K ∩ ([0, 1]m−1 ×
UD × [0, 1]n−m) are both open, nonempty, and disjoint, this means K is
disconnected, a contradiction to K being a continuum. �

Lemma 3.3. Let n ∈ N. For 0 ≤ i ≤ n, let Ii = [0, 1], and for 1 ≤ i ≤ n,
let Gi be a full closed subset of Ii−1 × Ii and let Fn

i=1Gi be the Mahavier
product of {G1, . . . , Gn}. Then for all 1 ≤ i ≤ n, we have πi (F

n
i=1Gi) =

Gi.

Proof. Consider a point (xi−1, xi) ∈ Gi. Since each Gi is full, there is
a point p = (p0, . . . , pn) in the Mahavier product such that pi−1 = xi−1

and pi = xi. Therefore, (xi−1, xi) ∈ πi (Fn
i=1Gi), so Gi ⊂ πi (Fn

i=1Gi).
Consider a point p = (p0, . . . , pn) in the Mahavier product, and, in

particular, πi (F
n
i=1Gi) = (pi−1, pi). From the de�nition of the Mahavier

product, there must be a point (xi−1, xi) ∈ Gi such that xi−1 = pi−1

and xi = pi. Therefore, Gi ⊃ πi (F
n
i=1Gi), so we conclude that Gi =

πi (F
n
i=1Gi). �
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Lemma 3.4. Let n ∈ N. For 0 ≤ i ≤ n, let Ii = [0, 1], and for 1 ≤ i ≤ n,
let Gi be a closed subset of Ii−1 × Ii, and let Fn

i=1Gi be the Mahavier
product of {G1, . . . , Gn}. Suppose K ⊂ Fn

i=1Gi is a straight line. Then
for any 1 ≤ i ≤ n, πi(K) is a (possibly degenerate) straight line.

Proof. Let the straight line K ⊂ Fn
i=1Gi be described by the vector

equation: K = {(x0, . . . , xn) ∈ Rn+1 | (x0, . . . , xn) = (a0, . . . , an) +
t(b0, . . . , bn) for t ∈ [0, 1]}.

Then πi(K) = {(xi−1, xi) ∈ R2 | (xi−1, xi) = (ai−1, ai) + t(bi−1, bi)
for t ∈ [0, 1]}, which is the vector equation for a straight line (possibly
degenerate). �

Lemma 3.5. Let I0 = I1 = I2 = [0, 1], and let G1 ⊂ I0 × I1 and
G2 ⊂ I1 × I2 be full and closed. Let K = G1 ? G2 be a piecewise linear
curve. Then G1 and G2 are piecewise linear curves.

Proof. From Lemma 3.3, G1 and G2 are the projections of K. From
Lemma 3.4, the projection of a straight line is a (possibly degenerate)
straight line. Since K is the union of �nitely many straight lines, and the
projection of each of these is a (possibly degenerate) straight line, each
projection is the union of �nitely many straight lines, therefore piecewise
linear. As projection maps are continuous, each projection will also be a
continuum. �

In the next lemma we use the following terminology. If p ∈ (0, 1), the
sides of p are [0, p) and (p, 1]. An open interval on a side of p is of the
form (a, p) or (p, b).

Lemma 3.6. Let I0 = I1 = I2 = [0, 1], and let G1 ⊂ I0×I1, G2 ⊂ I1×I2
be full and closed. Let K = G1 ?G2 be a piecewise linear curve. Then for
each factor space Ii (for i ∈ {0, 1, 2}), for each pi in the interior of Ii, for
each bonding space Gj (for j ∈ {1, 2}) with Ii as a factor space, either

(1) there is a point p ∈ Gj that is the intersection of the endpoints of
straight lines that project onto open intervals in Ii either side of
pi (the two straight lines may be part of the same straight line),
or

(2) there is a straight line l in Gj such that the projection of l on Ii
is {pi}, and for each side S of pi, there is a straight line k that
intersects l at one of its endpoints, and k projects onto an open
interval in S.

Proof. By Lemma 3.5 each bonding space consists of a �nite number
of straight lines. Suppose there was a bonding space Gj with a factor
space Ii and a point pi in the interior of Ii such that for every point p
in Gj with coordinate pi (corresponding to the interval Ii), either p is
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the intersection of the endpoints of straight lines that project only onto
open intervals on one side of pi, or p is part of a straight line segment
l that projects completely onto {pi}, and any straight line connected to
the endpoints of l only projects onto open intervals on one side of pi.

Since Gj is piecewise linear, by Lemma 2.9, there is some ε > 0 such
that for each straight line segment in Gj , the band of radius ε of a line
segment intersects the band of radius ε of another line if and only if the
two lines meet at their endpoints.

Take the bands of all lines that project onto intervals in [0, pi) (along
with any lines attached to endpoints of intervals in this collection), and
call this U , and take the bands of all lines that project onto intervals
in (pi, 1] (along with any lines attached to endpoints of intervals in this
collection), and call this V . Note that U and V are disjoint. Then (U∩Gj)
and (V ∩Gj) are open subsets of Gj , and (U ∩Gj) ∪ (V ∩Gj) = Gj , so
Gj is disconnected, contradicting the fact that K is a continuum. �

We now prove four lemmas, each of which will be directly used to
prove the main result. In the following lemmas we assume each Mahavier
product is a continuum. We also assume either each bonding space Gi is
full or Gi is a continuum. The assumption that Gi is full was discussed in
�2, and the assumption that Gi is a continuum is not a loss of generality
due to Lemma 3.2.

Lemma 3.7. Let I0 = I1 = I2 = [0, 1], and let G1 ⊂ I0 × I1 and
G2 ⊂ I1×I2 be continua. Let K = G1?G2 be a non-degenerate continuum.
Then if G1 or G2 contain a point of order 0, K is an arc.

Proof. Without loss of generality suppose G1 has a point x1 of order 0.
Since a point of order 0 is a component and G1 is a continuum, G1 is
a single point. Then K ⊂ ({x1} × [0, 1]). Since K is a non-degenerate
continuum, it must be the case that K is an arc. �

Lemma 3.8. Let I0 = I1 = I2 = [0, 1], and let G1 ⊂ I0 × I1 and
G2 ⊂ I1 × I2 be full and closed. Let K = G1 ? G2, and suppose K is a
piecewise linear simple closed curve. Then if πi(K) for i ∈ {1, 2} contains
a point of order n ≥ 3, K contains a point of order m ≥ 3.

Proof. Let x1 = (x0, x1) ∈ G1, and suppose that x1 is a point of order
n ≥ 3. Then x1 is the intersection of the endpoints of n straight lines.

Suppose x1 ∈ {0, 1}. If x1 = 1, then since x1 has n straight lines
connected to it, there will be a non-empty open interval (a1, 1) ⊂ I1 such
that each of the n straight lines projects either onto (a1, 1), or entirely
onto {1}. Then since G2 is full, connected, and piecewise linear, there
is a point x2 = (1, x2) ∈ G2 that is the endpoint of a straight line that
projects onto some non-empty open interval (a2, 1) ⊂ I1. Then by Lemma
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2.13, there are at least n ≥ 3 straight lines connecting to (x0, 1, x2) in K;
hence, (x0, 1, x2) has order m ≥ n ≥ 3. This case is entirely similar if
x1 = 0.

Otherwise, suppose x1 ∈ (0, 1). Then we know from Lemma 3.6 that
in G2 there is either a point x2 = (x1, x2) that satis�es condition (1), or
a line l2 that satis�es condition (2). We will consider both cases.

Case 1: x2 is the intersection of the endpoints of at least two straight
lines l1 and l2 that project onto open intervals in I1 either side of x1.

In this case, there is a neighbourhood N of x1 such that for each
straight line q in N that intersects at x1, there is a straight line l in
{l1} ∪ {l2} ∪ {x2} such that q and l project onto the same subset of
I1. By Lemma 2.13, for each such line l1 there will be a straight line
in the Mahavier product. Therefore, the point (x0, x1, x2) ∈ K is the
intersection of (at least) n straight lines, and so has order m ≥ n ≥ 3.

Case 2: For each side S of x1, there is a point x2,S in the bonding
space G2 such that x2,S is the intersection of the endpoints of two straight
lines, one that projects entirely onto {x1} (this is l2 in the condition in
the lemma) and the other that projects onto an open interval in S.

Suppose in this case that there is a straight line l1 in G1 that has an
endpoint at x1, and l1 projects entirely onto {x1} in I1. Then since there
is a line l2 in G2 that also projects entirely onto {x1} in I1, there will
be points of the form (a, x1, b) (where (a, x1) ∈ l1 and (x1, b) ∈ l2) in K,
so there will be a 2-cell in K, a contradiction to K being a simple closed
curve.

Therefore, we know that in this case every straight line that meets at x1

in G1 projects onto an open interval on one side of x1 in I1. Since there are
at least three straight lines that do this, there must be an interval U ⊂ I1
on one side S of x1 that has at least two straight lines projecting onto it.
Then by the hypothesis for this case, there is also a point x2,S = (x1, x2)
that has a straight line with x2,S as an endpoint which projects onto an
open interval that is a subset of U , along with another straight line with
x2,S as an endpoint that projects entirely onto {x1}. Then by Lemma
2.13, there will be at least two straight lines in the Mahavier product
whose endpoints connect at the point (x0, x1, x2) ∈ K. There will also be
another line in the Mahavier product of the form (x0, x1, a), where (x1, a)
is a point in the line in G2 that projects entirely onto {x1}. Therefore,
there will be at least three straight lines in K whose endpoints meet at
(x0, x1, x2).

In either case there is a point in K of order at least 3. The proof works
in an entirely similar manner if a point x2 ∈ G2 has order n ≥ 3. �
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Lemma 3.9. Let I0 = I1 = I2 = [0, 1], and let G1 ⊂ I0 × I1 and
G2 ⊂ I1 × I2 be full and closed. Let K = G1 ? G2, and suppose K is
a piecewise linear continuum. Then if G1 and G2 are both simple closed
curves, K is not a simple closed curve.

Proof. Since K projects fully onto each factor space, there is at least
one point x1 = (x0, x1) in G1 such that x1 = 1 and at least one point
x2 = (x1, x2) in G2 such that x1 = 1. For the point x1 consider the
component C1 of G1 ∩ ([0, 1] × {1}) that contains x1. C1 is either a
singleton or an arc. Similarly, for the point x2, consider the component
C2 of G2 ∩ ({1} × [0, 1]) that contains x2. C2 will also be a singleton or
an arc.

There are three cases to consider.

Case 1: C1 and C2 are both singletons. By Lemma 3.5, each graph is
piecewise linear, and we are assuming each graph is a simple closed curve,
so the points C1 and C2 have order 2 by Proposition 2.7. In this case, there
must be two straight lines l1,1 and l1,2 in G1 and an interval (a1, 1) ⊂ I1
such that each straight line projects onto (a1, 1). Similarly, there must be
two straight lines l2,1 and l2,2 in G2 and an interval (a2, 1) ⊂ I2 such that
each straight line projects onto (a2, 1). Let a = max{a1, a2}.

Consider what happens in K around the point (x0, 1, x2) (the coordi-
nates x0 and x2 are taken from the points x1 and x2). For each line l1,1
and l1,2, by Lemma 2.13, there will be two lines which appear in K, since
l2,1 and l2,2 in G2 also project onto (a, 1) in I1 and meet at (x2, 1).

Therefore, there will be a total of four distinct straight lines in K that
meet at (x0, 1, x2), so this point has order 4, a contradiction to K being
a simple closed curve.

Case 2: C1 is a singleton and C2 is a non-degenerate interval. Similar
to case 1, there will be two lines l1,1 and l1,2 in G1 that meet at C1 =
x1 = (x0, 1). These will project onto an interval (a1, 1) in I1. In G2, there
is a non-degenerate straight line with second coordinate 1; this is C2. As
each point of G2 has order 2, there will also be straight lines that connect
to the endpoints of C2, which project onto an interval (a2, 1) in I1. Let
l2 be one of those, and suppose l2 intersects C2 at the point (1, x2) in G2.
Let a = max{a1, a2}.

Then by Lemma 2.13, in K there will be three straight lines that
intersect at the point (x0, 1, x2): two resulting from l1,1 and l1,2 meeting
l2, and one of the form (x0, 1, α), where (1, α) ∈ C2.

The case where C2 is a singleton and C1 is a non-degenerate interval
is entirely similar.

Case 3: C1 and C2 are both non-degenerate intervals. In this case, K
will contain a subset of points of the form (x0, 1, x2), where x0 ∈ C1 and
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x2 ∈ C2. Therefore, K contains a 2-cell, and so is not a simple closed
curve. �

Lemma 3.10. Let I0 = I1 = I2 = [0, 1], and let G1 ⊂ I0 × I1 and
G2 ⊂ I1× I2 be continua. Let K = G1 ?G2, and suppose K is a piecewise
linear simple closed curve. Then if either G1 or G2 is an arc, K is an
unknot.

Proof. Suppose, without loss of generality, that G1 is an arc. Then K ⊂
(G1 × [0, 1]), so K is embedded in a (piecewise linear) plane; hence, by
Corollary 2.5, K is an unknot. �

The following is the main theorem.

Theorem 3.11. Let I0 = I1 = I2 = [0, 1], and let G1 ⊂ I0 × I1 and
G2 ⊂ I1 × I2 be continua. If K = G1 ? G2 is a piecewise linear simple
closed curve, then K is an unknot.

Proof. If the projection ρj,i(πj(K)) of K onto a factor space Ii is a sin-
gleton, then the graph Gj must be either a singleton or an arc. In the
�rst case, by Lemma 3.7, K is an arc, so not a simple closed curve. For
the second case, by Lemma 3.10, K is an unknot.

Thus, we can assume that if K is non-trivial, K projects fully onto all
factor spaces.

If G1 or G2 contains a point of order n ≥ 3, then by Lemma 3.8, K
contains a point of order n ≥ 3, so K is not a simple closed curve. So the
order of every point in G1 and G2 must be either 1 or 2. Therefore, by
Proposition 2.7, each is either a simple closed curve or an arc.

Suppose neither G1 nor G2 is an arc, then they must both be simple
closed curves. Then by Lemma 3.9, K is not a simple closed curve, con-
tradicting the fact that it is a knot. So we conclude that either G1 or G2

must be an arc.
Then by Lemma 3.10, K is an unknot. �

4. Discussion

The de�nition of a knot in De�nition 2.1 requires the embedding of
the knot to be piecewise linear. This is a de�nition commonly used in
the study of knot theory (indeed, it was taken directly from [6]). The
reason this is often used (instead of simply the �embedding of a simple
closed curve in R3�) is that it prevents pathological examples, for example
wild knots, but allows the study of many of the properties of interest to a
knot theorist. It would, however, be disingenuous to pretend that, in this
context, requiring the Mahavier product to be piecewise linear does not
exclude a large number of examples that are of interest. We have shown
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that the only piecewise linear knot that is a Mahavier product is the
unknot. This does not mean that it is not possible to create non-piecewise
linear knots as Mahavier products, even if they are �well behaved� in a
knot theoretic sense.

The reason that knots are restricted to be piecewise linear in this pa-
per is that it makes them much easier to work with. If each bonding
space is a piecewise linear �nite graph, then at any point there will be
a neighbourhood consisting of �nitely many straight lines connecting at
that point. This means the order of points in the Mahavier product can
be easily calculated, which is central to the proof of the main theorem.

An answer to the following problem would generalise Theorem 3.11
to include any knot and also go a long way to advancing the study of
what continua (in particular, �nite graphs) are constructible as Mahavier
products.

Problem 4.1. Let M = Fn
i=1Gi be a Mahavier product and suppose

M is a �nite graph. Let ε > 0. Does there exist a sequence of piecewise
linear bonding spaces G∗

1, G
∗
2, . . . G

∗
n, where dH(Fn

i=1Gi,F
n
i=1G

∗
i ) < ε?

The main result in this paper is fairly speci�c, relating to knots in
R3. Intuitively, the reason that Theorem 3.11 is true is that if you have
any non-trivial knot in R3 (any knot that is not equivalent to the un-
knot), then no matter how you embed it, it will always have �crossings� in
any projection. Since projections of a Mahavier product are its bonding
spaces, the information of these crossings is lost in the bonding spaces,
so when you try to recreate the knot as a Mahavier product, it loses this
information and cannot be recreated. In the language of Nall [9], we need
Cr(K) = K, where K is the embedded knot in question and Cr(K) is
the set of crossovers of K. We have shown that this is impossible for a
non-trivial knot.

On the question of what continua are possible to be constructed as
Mahavier products, this paper does not strictly provide much of an an-
swer. Every knot is a simple closed curve (i.e., a circle), and a circle
can quite trivially be constructed as a Mahavier product in [0, 1]3. What
it does show is that certain embeddings of a circle are not possible to
be constructed as Mahavier products. This highlights the importance of
the embedding of a continuum when considering whether it is possible to
create it as a Mahavier product.
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