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SPACES WITH sn-NETWORK g-FUNCTIONS

TRAN VAN AN AND LUONG QUOC TUYEN

Abstract. In this paper, we introduce the concepts of an sn-
network g-function, an sn-developable space, and a strongly sn-
developable space as generalizations of a �weak base g-function,�
a �g-developable space,� and a �strongly g-developable space,� re-
spectively. Then we give some characterizations of sn-symmetric
spaces, Cauchy sn-symmetric spaces, sn-metrizable spaces, and
Cauchy sn-symmetric spaces with σ-(P )-property sn-networks.

1. Introduction

In [11], Kyung Bai Lee introduced CWC-maps and g-developable spaces
and gave some characterizations of g-developable spaces. Later, Zhi Min
Gao [4] introduced the notion of weak base g-functions by means of weak
bases to study the metrizability of a topological space. In 2006, Y. Tanaka
and Y. Ge [18] introduced strongly g-developable spaces and gave some
characterizations of g-developable spaces.

In this paper, we introduce the concepts of an sn-network g-function,
an sn-developable space, and a strongly sn-developable space as gener-
alizations of a �weak base g-function,� a �g-developable space,� and a
�strongly g-developable space,� respectively. Then we give some char-
acterizations of sn-symmetric spaces, Cauchy sn-symmetric spaces, sn-
metrizable spaces, and Cauchy sn-symmetric spaces with σ-(P )-property
sn-networks.

Throughout this paper, all spaces are assumed to be T1 and regular
and N denotes the set of all natural numbers. Given two families P and
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178 T. V. AN AND L. Q. TUYEN

Q of subsets of X, we denote P
∧
Q = {P ∩ Q : P ∈ P, Q ∈ Q} and

(P)x = {P ∈ P : x ∈ P}. For a sequence {xn} converging to x and
P ⊂ X, we say that {xn} is eventually in P if {x}

∪
{xn : n ≥ m} ⊂ P

for some m ∈ N and {xn} is frequently in P if some subsequence of {xn}
is eventually in P .

De�nition 1.1. For a cover P of a space X, let (P ) be one of the follow-
ing properties: point-�nite, compact-�nite, locally �nite, point-countable,
compact-countable, or locally countable. We say that P has the σ-(P )-
property if P can be expressed as

∪
{Pn : n ∈ N} where each Pn has the

(P )-property.

De�nition 1.2. Let P =
∪
{Px : x ∈ X} be a cover of a space X such

that for every x ∈ X, Px is a network at x, and if P1,P2 ∈ Px, then
P ⊂ P1 ∩ P2 for some P ∈ Px.

(1) P is a weak base [3], if for G ⊂ X, G is open in X if and only if
for every x ∈ G, there exists P ∈ Px such that P ⊂ G; Px is said
to be a weak neighborhood base at x.

(2) P is an sn-network [12], if each element of Px is a sequential
neighborhood of x for all x ∈ X; Px is said to be an sn-network
at x.

(3) X is sn-�rst countable [5] (g-�rst countable, respectively [17]), if
there is a countable sn-network (a countable weak neighborhood
base, respectively) at x in X for all x ∈ X.

(4) X is sn-metrizable [5] (g-metrizable, respectively [17]), if X has a
σ-locally �nite sn-network (weak base, respectively).

De�nition 1.3 ([4]). A function g : N × X → P(X) is a weak base

g-function if it satis�es the following conditions:

(1) x ∈ g(n, x) for all x ∈ X and n ∈ N;
(2) g(n+ 1, x) ⊂ g(n, x) for all n ∈ N;
(3) {g(n, x) : n ∈ N, x ∈ X} is a weak base for X.

Note that weak base g-functions were called CWC-maps and CWBC-maps
in [11] and [16], respectively.

De�nition 1.4. A function g : N × X → P(X) is an sn-network g-
function if it satis�es the following conditions:

(1) x ∈ g(n, x) for all x ∈ X and n ∈ N;
(2) g(n+ 1, x) ⊂ g(n, x) for all n ∈ N;
(3) {g(n, x) : n ∈ N, x ∈ X} is an sn-network for X.

Remark 1.5. (1) Note that a weak base g-function is an sn-network
g-function.
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(2) If X is sequential, then g is an sn-network g-function if and only
if g is a weak base g-function.

Let g be an sn-network g-function on X, let {xn} and {yn} be two
sequences in X, and let x ∈ X. Consider the following conditions imposed
on an sn-network g-function g for X.

(E) If xn ∈ g(n, x) for all n ∈ N, then xn → x.
(F) If x ∈ g(n, xn) for all n ∈ N, then xn → x.
(WF) If x ∈ g(n, xn) for all n ∈ N, then xnk

→ x for some subsequence
{xnk

} of {xn}.
(G) If x, xn ∈ g(n, yn) for all n ∈ N, then xn → x.
(GP) Each {g(n, x) : x ∈ X} has the (P )-property and if x, xn ∈

g(n, yn) for all n ∈ N, then xn → x.
(H) If xn → x and xn ∈ g(n, yn) for all n ∈ N, then yn → x.

(HLF) If xn → x and xn ∈ g(n, yn) for all n ∈ N, then yn → x; and
for each x ∈ X, there exists U ∈ τ such that |{U ∩ g(n, y) : y ∈
X}| < ω.

(GLF) Each {g(n, x) : n ∈ N} is locally �nite and g satis�es (G).
(GPF) Each {g(n, x) : n ∈ N} is point-�nite and g satis�es (G).

De�nition 1.6. Let {Pn : n ∈ N} be a sequence of covers of a space X.

(1)
∪
{Pn : n ∈ N} is a σ-strong network for X [10] if Pn+1 re�nes

Pn for all n ∈ N and {St(x,Pn) : n ∈ N} is a network at x for all
x ∈ X.

(2)
∪
{Pn : n ∈ N} is a σ-(P )-strong network for X if it is a σ-strong

network and each Pn has the (P )-property.
(3)

∪
{Pn : n ∈ N} is a weak-development [13] if {St(x,Pn) : n ∈ N}

is a weak base at x for all x ∈ X.
(4) P is a σ-(P )-strong network consisting of sn-covers (cs-covers,

cfp-covers, cs∗-covers, respectively) if each Pn is an sn-cover (cs-
cover, cfp-cover, cs∗-cover, respectively).

De�nition 1.7. (1) X is a g-developable space [11] if X has a weak
base g-function satisfying (G).

(2) X is an sn-developable space if X has an sn-network g-function
satisfying (G).

(3) X is a strongly g-developable space [18] if X is a sequential space
with a σ-locally �nite strong network consisting of cs-covers.

(4) X is a strongly sn-developable space if X has a σ-locally �nite
strong network consisting of cs-covers.

Remark 1.8. (1) Every g-developable space is an sn-developable
space.
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(2) Every strongly g-developable space is a strongly sn-developable
space.

(3) If X is sequential, then
(a) X is sn-developable if and only if it is g-developable;
(b) X is strongly sn-developable if and only if it is strongly g-

developable.

De�nition 1.9 ([13]). Let P be a cover of a space X.

(1) P is uniform if for each x ∈ X and G is an in�nite subfamily of
(P)x, then G is a network at x in X.

(2) P is a uniform sn-network (a uniform weak base, respectively) if
P is both uniform and sn-network (weak base, respectively).

(3) P is point-regular if, for every x ∈ U ∈ τ , the set {P ∈ (P)x :
P ̸⊂ U} is �nite.

(4) P is a point-regular sn-network (a point-regular weak base, re-
spectively) if P is both point-regular and sn-network (weak base,
respectively).

De�nition 1.10 ([8]). Let d be a d-function on a space X.

(1) For each x ∈ X and n ∈ N, let Sn(x) = {y ∈ X : d(x, y) < 1/n}.
(2) For every P ⊂ X, put d(P ) = sup{d(x, y) : x, y ∈ P}.
(3) X is symmetric if {Sn(x) : n ∈ N} is a weak neighborhood base

at x for all x ∈ X.
(4) X is sn-symmetric if {Sn(x) : n ∈ N} is an sn-network at x for

all x ∈ X.

De�nition 1.11. (1) A symmetric space (X, d) is called a Cauchy

symmetric space ([19]) if every convergent sequence is d-Cauchy.
(2) An sn-symmetric space (X, d) is called a Cauchy sn-symmetric

space [2] if every convergent sequence is d-Cauchy.

Remark 1.12. If X is a sequential space, then

(1) X is a symmetric space if and only if it is an sn-symmetric space;
(2) X is a Cauchy symmetric space if and only if it is a Cauchy sn-

symmetric space.

Notation 1.13. Let
∪
{Pn : n ∈ N} be a σ-strong network for a space

X. For each n ∈ N, put Pn = {Pα : α ∈ Λn} and endow Λn with the
discrete topology. Then

M =
{
α = (αn) ∈

∏
n∈N

Λn : {Pαn
} forms a network at some point xα ∈ X

}
is a metric space and the point xα is unique in X for every α ∈ M . De�ne
f : M → X by f(α) = xα. Let us call (f,M,X,Pn) a Ponomarev system

following [15].
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For some unde�ned or related concepts, we refer the reader to [10] and
[13].

2. The Main Results

Theorem 2.1. The following are equivalent for a space X:

(1) X is an sn-�rst countable space;

(2) there exists an sn-network g-function on X satisfying (E);
(3) there exists an sn-network g-function on X.

Proof. (1) =⇒ (2). Let G =
∪
{Gx : x ∈ X} be an sn-network for X,

where each Gx = {Pn,x : n ∈ N} is a countable sn-network at x. For each
n ∈ N and x ∈ X, let

g(n, x) =
∩
{Pi,x : 1 ≤ i ≤ n}.

Then g is an sn-network g-function on X. Assume that {xn} is a sequence
in X and x ∈ X such that xn ∈ g(n, x) for all n ∈ N. Since g(n, x) is a
decreasing network at x, it implies that xn → x. Thus, g satis�es (E).

(2) =⇒ (3). Obvious.

(3) =⇒ (1). For each x ∈ X, put Gx = {g(n, x) : n ∈ N}. Then each
Gx is a countable sn-network at x. Therefore, X is sn-�rst countable. �

Corollary 2.2. The following are equivalent for a space X:

(1) X is a g-�rst countable space;

(2) there exists a weak base g-function on X satisfying (E);
(3) there exists a weak base g-function on X.

Theorem 2.3. The following are equivalent for a space X:

(1) X is an sn-symmetric space;

(2) X has a σ-strong network
∪
{Gn : n ∈ N} such that {St(x,Gn) :

n ∈ N} is an sn-network at x for all x ∈ X;

(3) there exists an sn-network g-function on X satisfying (F);
(4) there exists an sn-network g-function on X satisfying (WF).

Proof. (1) =⇒ (2). For each n ∈ N, let Gn = {P ⊂ X : d(P ) < 1/n}.
Then St(x,Gn) = Sn(x) for all n ∈ N and x ∈ X. Therefore,

∪
{Gn : n ∈

N} is a σ-strong network and {St(x,Gn) : n ∈ N} is an sn-network at x
for all x ∈ X.

(2) =⇒ (3). Assume that (2) holds. For each x ∈ X and n ∈ N, let
g(n, x) = St(x,Gn). Then g is an sn-network g-function on X. Now, let
{xn} be a sequence in X and x ∈ X such that x ∈ g(n, xn) for all n ∈ N.
Then xn ∈ St(x,Gn) for all n ∈ N. Thus, xn → x.

(3) =⇒ (4). Obvious.
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(4) =⇒ (1). Let g be an sn-network g-function on X satisfying (WF).
For each x, y ∈ X with x ̸= y, put δ(x, y) = min{n : x /∈ g(n, y), y /∈
g(n, x)}. Now, for each x, y ∈ X, denote

d(x, y) =

{
0 if x = y,

1/δ(x, y) if x ̸= y.

Then d is a d-function on X, and

(a) for each n ∈ N, there exists n0 ∈ N such that Sn0(x) ⊂ g(n, x).
If not, there exists i0 ∈ N such that for each n ∈ N, there exists
xn ∈ Sn(x) − g(i0, x). Since xn ∈ Sn(x), δ(x, xn) > n. Thus,
x ∈ g(n, xn) or xn ∈ g(n, x) for all n ∈ N. This follows that
xnk

→ x for some subsequence {xnk
} of {xn}. On the other

hand, since each g(i0, x) is a sequential neighborhood at x, {xnk
}

is eventually in g(i0, x). This is a contradiction to xn /∈ g(i0, x)
for all n ∈ N.

(b) for each n ∈ N, there exists n0 ∈ N such that g(n0, x) ⊂ Sn(x).
If not, there exists i0 ∈ N such that for every n ∈ N, there exists
xn ∈ g(n, x)− Si0(x). Since {g(n, x) : n ∈ N} is a decreasing sn-
network at x, it implies that xn → x. Thus, {xn} is eventually in
g(i0, x). Pick n ∈ N such that xn ∈ g(i0, x), then δ(xn, x) > i0, so
xn ∈ Si0(x). This is a contradiction to xn /∈ Si0(x) for all n ∈ N.

Then (a) and (b) imply that {Sn(x) : n ∈ N} is an sn-network at x for
all x ∈ X, and X is sn-symmetric. �

Corollary 2.4. The following are equivalent for a space X:

(1) X is a symmetric space;

(2) X has a weak-development;

(3) there exists a weak base g-function on X satisfying (F);
(4) there exists a weak base g-function on X satisfying (WF).

Theorem 2.5. The following are equivalent for a space X:

(1) X is an sn-developable space;

(2) X is a Cauchy sn-symmetric space;

(3) X has a σ-strong network consisting of cs-covers;
(4) X has a σ-strong network consisting of sn-covers;
(5) X is a 1-sequence-covering and π-image of a metric space;

(6) X is a sequence-covering and π-image of a metric space.

Proof. (1) =⇒ (2). Let g be an sn-network g-function satisfying (G).
Then X is Cauchy sn-symmetric. In fact, for each n ∈ N, put Gn =
{g(n, x) : x ∈ X}, and put δ(x, y) = min{n : x /∈ St(y,Gn)} for each
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x, y ∈ X with x ̸= y. Next, for each x, y ∈ X, we denote

d(x, y) =

{
0 if x = y,

1/δ(x, y) if x ̸= y.

Then d is a d-function on X and Sn(x) = St(x,Gn). Furthermore, we
have

(a) {Sn(x) : n ∈ N} is a network at x for all x ∈ X. If not, there
exist x ∈ U ∈ τ such that Sn(x) ̸⊂ U for all n ∈ N. Thus, for
each n ∈ N, there exists xn ∈ Sn(x)−U . Since Sn(x) = St(x,Gn)
for all n ∈ N, it implies that for each n ∈ N, there exists yn ∈ X
such that x, xn ∈ g(n, yn). By condition (G), xn → x, implying
that {xn} is eventually in U . This is a contradiction.

(b) Let m,n ∈ N; we put k = max{m,n}. Since Gi+1 re�nes Gi

and Si(x) = St(x,Gi) for all i ∈ N, it implies that Sk(x) ⊂
Sm(x) ∩ Sn(x).

(c) Since g(n, x) is a sequential neighborhood at x for all x ∈ X,
and g(n, x) ⊂ St(x,Gn) = Sn(x), it implies that each Sn(x) is
sequential neighborhood at x.

Then X is sn-symmetric. Now, let {xi} be a sequence in X,
xi → x and ε > 0. Take n ∈ N such that 1/n < ε. Since g(n, x)
is a sequential neighborhood at x, {x}

∪
{xi : i ≥ m} ⊂ g(n, x)

for some m ∈ N. Hence, xi ∈ St(xj ,Gn) for all i, j ≥ m. This
implies that d(xi, xj) < 1/n < ε for all i, j ≥ m. Therefore, X is
Cauchy sn-symmetric.

(2) =⇒ (3). For each n ∈ N, denote Gn = {P ⊂ X : d(P ) < 1/n}.
Then St(x,Gn) = Sn(x). Since X is Cauchy sn-symmetric, each Gn is a
cs-cover. Therefore,

∪
{Gn : n ∈ N} is a σ-strong network consisting of

cs-covers.

(3) =⇒ (4). Let
∪
{Pi : i ∈ N} be a σ-strong network consisting of

cs-covers. For each x, y ∈ X with x ̸= y, put δ(x, y) = min{n : y /∈
St(x,Pn)}, and denote

d(x, y) =

{
0 if x = y,

1/δ(x, y) if x ̸= y.

Then d is a d-function on X, and Sn(x) = St(x,Pn) for all n ∈ N.
We claim that for each x ∈ X and ε > 0, there exists k = k(x, ε) ∈ N
such that d(x, y) < 1/k and d(x, z) < 1/k imply d(y, z) < ε. Otherwise,
there exist x0 ∈ X, ε0 > 0, and two sequences {yn} and {zn} in X
such that d(yn, zn) ≥ ε0 whenever d(x0, yn) < 1/n and d(x0, zn) < 1/n.
Since

∪
{Pn : n ∈ N} is a σ-strong network, {yn} and {zn} converge
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to x0. Now, we choose i ∈ N such that 1/i < ε0. Since Pi is a cs-
cover for X, {ym, zm} ⊂ P for some m ∈ N and P ∈ Pi. Thus, ym ∈
St(zm,Pi), implying that d(ym, zm) = 1/δ(ym, zm) < 1/i < ε0. This is a
contradiction.

Now, for each x ∈ X and n ∈ N, denote kx,n = k(x, 1/n) such that
d(y, z) < 1/n whenever d(x, y) < 1/kx,n and d(x, z) < 1/kx,n. Without
loss of generality, we can assume that kx,n+1 > kx,n for all n ∈ N. Put
Gn = {Skx,n(x) : x ∈ X} for every n ∈ N. It is obvious that each Gn is an
sn-cover and Gn+1 re�nes Gn for all n ∈ N. Furthermore,

∪
{Gn : n ∈ N} is

a σ-strong network. If not, there exist x ∈ U ∈ τ such that St(x,Gn) ̸⊂ U
for all n ∈ N. Thus, for each n ∈ N, there exists xn ∈ St(x,Gn) −
U . It follows that there exists yn ∈ X such that x ∈ Skyn,n

(yn) and
xn ∈ Skyn,n(yn) − U for every n ∈ N. Then d(x, yn) < 1/kyn,n and
d(xn, yn) < 1/kyn,n. This implies that d(x, xn) < 1/n. Thus, xn → x, a
contradiction. Hence,

∪
{Gn : n ∈ N} is a σ-strong network consisting of

sn-covers.

(4) =⇒ (1). Let
∪
{Gn : n ∈ N} be a σ-strong network consisting

of sn-covers. Then, for each n ∈ N and x ∈ X, there is i(n, x) ∈ N
such that Si(n,x)(x) ⊂ P for some P ∈ Gn, and i(n, x) < i(n + 1, x).
Now, for each n ∈ N and x ∈ X, we put g(n, x) = Si(n,x)(x). Then
g : N×X → P(X) is an sn-network g-function on X. Next, let {xn} and
{yn} be two sequences in X and x ∈ X satisfying that x, xn ∈ g(n, yn)
for all n ∈ N. Then xn → x. In fact, let x ∈ U ∈ τ . Since

∪
{Gn : n ∈ N}

is a σ-strong network, there exists n0 ∈ N such that St(x,Gn) ⊂ U for all
n ≥ n0. Since x ∈ g(n, yn) for all n ∈ N, it implies that g(n, yn) ⊂ U for
all n ≥ n0. Thus, xn ∈ U for all n ≥ n0. Hence, xn → x.

(4) =⇒ (5). By [18, Lemma 2.2] and [9, Theorem 3.10].

(5) =⇒ (6). Obvious.

(6) =⇒ (3). By [10, Proposition 16(3b)]. �

Corollary 2.6. The following are equivalent for a space X:

(1) X is a g-developable space;

(2) X is a Cauchy symmetric space;

(3) X has a weak-development consisting of cs-covers;
(4) X has a weak-development consisting of sn-covers;
(5) X is a weak-open and π-image of a metric space.

Theorem 2.7. The following are equivalent for a space X:

(1) X is an sn-metrizable space;

(2) there exists an sn-network g-function on X satisfying (HLF);
(3) X has a σ-locally �nite strong network consisting of cfp-covers;
(4) X has a σ-locally �nite strong network consisting of cs∗-covers;
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(5) X is a compact-covering compact and mssc-image of a metric

space;

(6) X is a sequentially-quotient π and mssc-image of a metric space;

(7) X is a 1-sequence-covering and mssc-image of a metric space.

Proof. (1) =⇒ (2). Let G =
∪
{Gn : n ∈ N} =

∪
{Gx : x ∈ X} be an

sn-network, where each Gn is locally �nite and each Gx is an sn-network
at x. Without loss of generality, we can assume that each Gn is a discrete
collection of closed subsets of X (see [5]). For each n ∈ N and x ∈ X, we
put

h(n, x) =

{
P ∈ Gn if Gn ∩ Gx ̸= ∅,
X −

∪
{P ∈ Gn : x /∈ P} if Gn ∩ Gx = ∅.

For each x ∈ X and n ∈ N, there exists U ∈ τ such that x ∈ U and U
meets at most only an element of Gn. Since

{U∩ h(n, x) : x ∈ X} ⊂
{U} ∪ {U − P : P ∈ Gn} ∪ {U ∩ P : P ∈ Gn, U ∩ P ̸= ∅},

it implies that |{U ∩ h(n, x) : x ∈ X}| < ω for all n ∈ N. Next, we shall
show that every h(n, x) is a sequential neighborhood at x. In fact, let
{xn} be a sequence in X where xn → x. If Gn ∩ Gx ̸= ∅, then h(n, x) =
P ∈ Gn ∩ Gx, and {xn} is eventually in h(n, x). If Gn ∩ Gx = ∅, then
h(n, x) = X −

∪
{P ∈ Gn : x /∈ P}. Since Gn is discrete,

∪
{P ∈ Gn : x /∈

P} is closed. This implies that h(n, x) is open. Therefore, each h(n, x) is
a sequential neighborhood at x.

Now, we put g(n, x) =
∩
{h(k, x) : 1 ≤ k ≤ n} for each n ∈ N and

x ∈ X. It is easy to see that g : N × X → P(X) is an sn-network
g-function on X, and for each x ∈ X, there exists U ∈ τ such that
|{U ∩ g(n, x) : x ∈ X}| < ω for all n ∈ N.

Next, let {xi} and {yi} be two sequences in X such that xi → x ∈ X,
xi ∈ g(i, yi) for all i ∈ N, and x ∈ V ∈ τ . Then there is n ∈ N such
that P ⊂ V for some P ∈ Gn ∩ Gx, and {x}

∪
{xi : i ≥ m} ⊂ P for some

m ∈ N. Since xi ∈ g(i, yi) ∩ P for all i ≥ m, yi ∈ P for all i ≥ m. This
implies that {yn} is eventually in P . Therefore, yn → x.

Then g is an sn-network g-function on X satisfying (HLF).

(2) =⇒ (3). Let g be an sn-network g-function on X satisfying (HLF).
For each n ∈ N and x ∈ X, let

h(n, x) =
∩
{g(n, y) : x ∈ g(n, y)} −

∪
{g(n, y) : x /∈ g(n, y)}.

Then x ∈ h(n, x) ⊂ g(n, x). Put

Hn = {h(n, x) : x ∈ X} and Gn = {h(n, x) : x ∈ X};

we have
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(a) if y ∈ h(n, x), then x ∈ h(n, y). In fact, since y ∈ h(n, x), it
implies that y ∈ g(n, z) if x ∈ g(n, z) and y /∈ g(n, z) if x /∈ g(n, z).
This follows that x ∈ g(n, z) if and only if y ∈ g(n, z). Therefore,
x ∈ h(n, y).

(b) Gn is locally �nite. Let x ∈ X; then there exists U ∈ τ such that
|{U ∩ g(n, y) : y ∈ X}| < ω. It implies that |{U ∩ h(n, y) : y ∈
X}| < ω. Firstly, we prove that for each n ∈ N, Hn is a partition
of X. Indeed,

Case 1. if {x, y} ⊂ g(n, z) for all z ∈ X, then

h(n, x) = h(n, y) =
∩
{g(n, z) : {x, y} ⊂ g(n, z)};

Case 2. if there exists z ∈ X such that x ∈ g(n, z) and
y /∈ g(n, z), then h(n, x) ⊂ g(n, z) and h(n, y) ∩ g(n, z) = ∅.
Thus, h(n, x) ∩ h(n, y) = ∅;

Case 3. if there exists z ∈ X such that x /∈ g(n, z) and
y ∈ g(n, z), then h(n, x) ∩ g(n, z) = ∅ and h(n, y) ⊂ g(n, z).
Thus, h(n, x) ∩ h(n, y) = ∅.

Then h(n, x) = h(n, y) or h(n, x)∩h(n, y) = ∅ for all x, y ∈ X.
Therefore, Hn is a partition of X.

Next, since each Hn is a partition of X, U meets only �nitely
many members h(n, y). Thus, eachHn is locally �nite. Therefore,
each Gn is locally �nite.

(c) {St(x,Gn) : n ∈ N} is a network at x for all x ∈ X. Let x ∈ U ∈ τ ;
since X is regular, there exists V ∈ τ such that x ∈ V ⊂ U . Then
there exists n0 ∈ N such that St(x,Hn0

) ⊂ V . If not, for each
n ∈ N, there exists yn ∈ St(x,Hn) − V . Then, for each n ∈ N,
there exists zn such that x, yn ∈ h(n, zn). By (a), zn ∈ h(n, x) ⊂
g(n, x) for all n ∈ N. Since {g(n, x) : n ∈ N} is a decreasing
network at x, zn → x. On the other hand, since yn ∈ h(n, zn), it
follows from (a) that zn ∈ h(n, yn) ⊂ g(n, yn). By property (HLF)
of g, it implies that yn → x. This is a contradiction. Thus, there
exists n0 ∈ N such that St(x,Hn0) ⊂ V . From (b) this implies
that St(x,Gn0) ⊂ U .

Finally, for each n ∈ N, put Qn =
∧
{Gi : i ≤ n}. Then, since

each Gn is a locally �nite closed cover, it follows that
∪
{Qn : n ∈

N} is a σ-locally �nite network consisting of cfp-covers.

(3) =⇒ (4). Obvious.

(4) =⇒ (1). Assume that (4) holds. Then X is an sn-�rst countable
and ℵ-space. Therefore, X is sn-metrizable.

(3) =⇒ (5). By [18, Lemma 2.2].

(5) =⇒ (6). Obvious.
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(6) =⇒ (1). By [6, Lemma 3.1] and [7, Theorem 5].

(1) =⇒ (7). If (1) holds, then X is a sequence-covering and mssc-
image of a metric space by [7, Theorem 5]. Since X is sn-�rst countable,
it follows from [1, Proposition 2.2] that X is a 1-sequence-covering and
mssc-image of a metric space.

(7) =⇒ (1). Assume that (7) holds. Then X is an sn-�rst countable
space. Furthermore, it follows from [7, Theorem 5] that X is an ℵ-space.
Therefore, X is an sn-metrizable space. �

Corollary 2.8. The following are equivalent for a space X:

(1) X is a g-metrizable space;

(2) there exists a weak base g-function on X satisfying (HLF);
(3) X is a weak-development consisting of locally �nite cfp-covers;
(4) X is a weak-development consisting of locally �nite cs∗-covers;
(5) X is a compact-covering quotient compact and mssc-image of a

metric space;

(6) X is a quotient π and mssc-image of a metric space;

(7) X is a weak-open and mssc-image of a metric space.

Theorem 2.9. The following are equivalent for a space X:

(1) X is a Cauchy sn-symmetric space with a σ-(P )-property sn-
network;

(2) X has a σ-(P )-strong network consisting of cs-covers;
(3) X has a σ-(P )-strong network consisting of sn-covers;
(4) there exists an sn-network g-function on X satisfying (GP).

Proof. (1) ⇐⇒ (2) ⇐⇒ (3). By [2, Theorem 2.3].

(3) =⇒ (4). Let
∪
{Gn : n ∈ N} be a σ-(P )-strong network consisting of

sn-covers. Then, for each n ∈ N and x ∈ X, there is i(n, x) ∈ N such that
Si(n,x)(x) ⊂ Q for some Q ∈ Gn, and i(n, x) < i(n + 1, x). Now, we put
g(n, x) = Si(n,x)(x) for every n ∈ N and x ∈ X. Then g : N×X → P(X)
is an sn-network g-function on X and each {g(n, x) : x ∈ X} has (P )-
property. Now, let {xn} and {yn} be two sequences in X and x ∈ X such
that x, xn ∈ g(n, yn) for all n ∈ N. Then xn → x. In fact, let x ∈ U ∈ τ .
Since

∪
{Gn : n ∈ N} is a σ-strong network, there exists n0 ∈ N such that

St(x,Gn) ⊂ U for all n ≥ n0. Since x ∈ g(n, yn) for all n ∈ N, it implies
that g(n, yn) ⊂ U for all n ≥ n0. Thus, xn ∈ U for all n ≥ n0, and
xn → x. Therefore, g satis�es (GP).

(4) =⇒ (1). Let g be an sn-network g-function satisfying (GP). For
each n ∈ N, put Gn = {g(n, x) : x ∈ X}. Then G =

∪
{Gn : n ∈ N} is an

sn-network with σ-(P )-property. Now, for each x, y ∈ X with x ̸= y, put
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δ(x, y) = min{n : x /∈ St(y,Gn)}, and denote

d(x, y) =

{
0 if x = y,

1/δ(x, y) if x ̸= y.

Then d is a d-function on X and Sn(x) = St(x,Gn) for all n ∈ N. We
shall show that {Sn(x) : n ∈ N} is a network at x for all x ∈ X. If not,
there exist x ∈ U ∈ τ such that Sn(x) ̸⊂ U for all n ∈ N. Thus, for
each n ∈ N, there exists xn ∈ Sn(x) − U . Since Sn(x) = St(x,Gn) for
all n ∈ N, it implies that for each n ∈ N, there exists yn ∈ X such that
x, xn ∈ g(n, yn). By condition (G), xn → x, a contradiction. This follows
that X is sn-symmetric. Now, let {xi} be a sequence in X, xi → x, and
ε > 0. Take n ∈ N such that 1/n < ε. Since {x}

∪
{xi : i ≥ m} ⊂ g(n, x)

for somem ∈ N, we have xi ∈ St(xj ,Gn) for all i, j ≥ m. This implies that
d(xi, xj) < 1/n < ε for all i, j ≥ m. Therefore, X is Cauchy sn-symmetric
with a σ-(P )-property sn-network. �

Corollary 2.10. The following are equivalent for a space X:

(1) X is a Cauchy symmetric space with a σ-(P )-property weak base;

(2) X has a weak-development consisting of (P )-property cs-covers;
(3) X has a weak-development consisting of (P )-property sn-covers;
(4) there exists a weak base g-function g on X satisfying (GP).

In case (P ) is locally �nite, we have the following.

Corollary 2.11. The following are equivalent for a space X:

(1) X is an sn-developable and sn-metrizable space;

(2) X is a strongly sn-developable space;

(3) X has a σ-locally �nite strong network consisting of sn-covers;
(4) there exists an sn-network g-function g on X satisfying (GLF);
(5) X is a 1-sequence-covering compact and mssc-image of a metric

space;

(6) X is a 1-sequence-covering compact and σ-image of a metric

space;

(7) X is a sequence-covering π and σ-image of a metric space.

Proof. (1) ⇐⇒ (2) ⇐⇒ (3) ⇐⇒ (4). By Theorem 2.9.

(3) =⇒ (5). Let
∪
{Gn : n ∈ N} be a σ-locally �nite strong network

consisting of sn-covers. Consider the Ponomarev system (f,M,X,Gn).
By [18, Lemma 2.2], f is a sequence-covering and compact map. Thus,
f is a 1-sequence-covering map by [1, Theorem 2.5]. Furthermore, since
each Gn is locally �nite, f is an mssc-map. Hence, (5) holds.

(5) =⇒ (6). By [15, Lemma 17].

(6) =⇒ (7). Obvious.
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(7) =⇒ (1). Let f : M → X be a sequence-covering π- and σ-map and
M be a metric space. By Theorem 2.5, X is an sn-developable space.
This implies that X is an sn-�rst countable space by Theorem 2.1. On
the other hand, since f is a sequence-covering and σ-map, this implies
that X is an ℵ-space. Therefore, X is an sn-metrizable space. �
Corollary 2.12. The following are equivalent for a space X:

(1) X is a g-developable and g-metrizable space;

(2) X is a strongly g-developable space;

(3) X has a weak-development consisting of locally �nite sn-covers;
(4) there exists a weak base g-function g on X satisfying (GLF);
(5) X is a weak-open compact-covering compact and mssc-image of

a metric space;

(6) X is a weak-open compact-covering compact and σ-image of a

metric space;

(7) X is a weak-open π- and σ-image of a metric space.

Proof. By [1, Corollary 2.8] and Corollary 2.11, we only need to prove
that (3) =⇒ (5). Let

∪
{Gn : n ∈ N} be a weak-development consisting of

locally �nite sn-covers. We can assume that Gn+1 re�nes Gn for all n ∈ N.
By using the proof of [18, Lemma 3.10], it follows that each Gn is a cfp-
cover. Consider the Ponomarev system (f,M,X,Gn). By [18, Lemma
2.2], f is a sequence-covering compact-covering quotient and compact
map. Thus, f is a weak-open map by [1, Corollary 2.9]. Furthermore,
since each Gn is locally �nite, f is an mssc-map. �

In case (P ) is point-�nite, by Theorem 2.9 and [13, Theorem 3.3.8], we
have the following corollaries.

Corollary 2.13. The following are equivalent for a space X:

(1) X has a uniform sn-network.
(2) X has a point-regular sn-network;
(3) there exists an sn-network g-function g on X satisfying (GPF);
(4) X is a 1-sequence-covering and compact image of a metric space;

(5) X is a sequence-covering and compact image of a metric space.

Corollary 2.14. The following are equivalent for a space X:

(1) X has a uniform weak base;

(2) X has a point-regular weak base;

(3) there exists a weak base g-function g on X satisfying (GPF);
(4) X is a weak-open and compact image of a metric space;

(5) X is a weak-open and compact image of a metric space.

Example 2.15. Let X = N ∪ {p} where p ∈ βN − N. Endow X with
discrete topology. Then X is a metric space. Put Y = N∪{p} and endow
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Y with the subspace topology of βN, then Y is not a k-space. De�ne
f : X → Y by f(x) = x for each x ∈ X. It is easy to see that f is a
1-sequence-covering and compact map. Hence, by Theorem 2.5, it follows
that

(1) not every sn-developable space is g-developable;
(2) not every Cauchy sn-symmetric space is Cauchy symmetric;
(3) Not every sn-symmetric space is symmetric.
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