http://topology.auburn.edu/tp/

http://topology.nipissingu.ca/tp/

Spaces with sn-Network g-Functions

by

TRAN VAN AN AND LUONG QUOC TUYEN

Electronically published on February 16, 2019

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	(Online) 2331-1290, (Print) 0146-4124
COPYRIGHT © by Topology Proceedings. All rights reserved.	

E-Published on February 16, 2019)

SPACES WITH sn-NETWORK g-FUNCTIONS

TRAN VAN AN AND LUONG QUOC TUYEN

ABSTRACT. In this paper, we introduce the concepts of an *sn*network *g*-function, an *sn*-developable space, and a strongly *sn*developable space as generalizations of a "weak base *g*-function," a "*g*-developable space," and a "strongly *g*-developable space," respectively. Then we give some characterizations of *sn*-symmetric spaces, Cauchy *sn*-symmetric spaces, *sn*-metrizable spaces, and Cauchy *sn*-symmetric spaces with σ -(*P*)-property *sn*-networks.

1. INTRODUCTION

In [11], Kyung Bai Lee introduced CWC-maps and g-developable spaces and gave some characterizations of g-developable spaces. Later, Zhi Min Gao [4] introduced the notion of weak base g-functions by means of weak bases to study the metrizability of a topological space. In 2006, Y. Tanaka and Y. Ge [18] introduced strongly g-developable spaces and gave some characterizations of g-developable spaces.

In this paper, we introduce the concepts of an *sn*-network *g*-function, an *sn*-developable space, and a strongly *sn*-developable space as generalizations of a "weak base *g*-function," a "*g*-developable space," and a "strongly *g*-developable space," respectively. Then we give some characterizations of *sn*-symmetric spaces, Cauchy *sn*-symmetric spaces, *sn*metrizable spaces, and Cauchy *sn*-symmetric spaces with σ -(*P*)-property *sn*-networks.

Throughout this paper, all spaces are assumed to be T_1 and regular and \mathbb{N} denotes the set of all natural numbers. Given two families \mathcal{P} and

²⁰¹⁰ Mathematics Subject Classification. Primary 54C10, 54D55, 54E40; Secondary 54E99.

Key words and phrases. Cauchy sn-symmetric, sn-developable, sn-metrizable, sn-network g-functions, strongly sn-developable.

^{©2019} Topology Proceedings.

 \mathcal{Q} of subsets of X, we denote $\mathcal{P} \wedge \mathcal{Q} = \{P \cap Q : P \in \mathcal{P}, Q \in \mathcal{Q}\}$ and $(\mathcal{P})_x = \{P \in \mathcal{P} : x \in P\}$. For a sequence $\{x_n\}$ converging to x and $P \subset X$, we say that $\{x_n\}$ is eventually in P if $\{x\} \bigcup \{x_n : n \geq m\} \subset P$ for some $m \in \mathbb{N}$ and $\{x_n\}$ is frequently in P if some subsequence of $\{x_n\}$ is eventually in P.

Definition 1.1. For a cover \mathcal{P} of a space X, let (P) be one of the following properties: point-finite, compact-finite, locally finite, point-countable, compact-countable, or locally countable. We say that \mathcal{P} has the σ -(P)-property if \mathcal{P} can be expressed as $\bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}$ where each \mathcal{P}_n has the (P)-property.

Definition 1.2. Let $\mathcal{P} = \bigcup \{\mathcal{P}_x : x \in X\}$ be a cover of a space X such that for every $x \in X$, \mathcal{P}_x is a network at x, and if $P_1, P_2 \in \mathcal{P}_x$, then $P \subset P_1 \cap P_2$ for some $P \in \mathcal{P}_x$.

- (1) \mathcal{P} is a weak base [3], if for $G \subset X$, G is open in X if and only if for every $x \in G$, there exists $P \in \mathcal{P}_x$ such that $P \subset G$; \mathcal{P}_x is said to be a weak neighborhood base at x.
- (2) \mathcal{P} is an *sn-network* [12], if each element of \mathcal{P}_x is a sequential neighborhood of x for all $x \in X$; \mathcal{P}_x is said to be an *sn-network* at x.
- (3) X is sn-first countable [5] (g-first countable, respectively [17]), if there is a countable sn-network (a countable weak neighborhood base, respectively) at x in X for all $x \in X$.
- (4) X is sn-metrizable [5] (g-metrizable, respectively [17]), if X has a σ -locally finite sn-network (weak base, respectively).

Definition 1.3 ([4]). A function $g : \mathbb{N} \times X \to \mathcal{P}(X)$ is a *weak base g*-function if it satisfies the following conditions:

- (1) $x \in q(n, x)$ for all $x \in X$ and $n \in \mathbb{N}$;
- (2) $g(n+1,x) \subset g(n,x)$ for all $n \in \mathbb{N}$;
- (3) $\{g(n,x): n \in \mathbb{N}, x \in X\}$ is a weak base for X.

Note that weak base g-functions were called CWC-maps and CWBC-maps in [11] and [16], respectively.

Definition 1.4. A function $g : \mathbb{N} \times X \to \mathcal{P}(X)$ is an *sn-network g*-function if it satisfies the following conditions:

- (1) $x \in g(n, x)$ for all $x \in X$ and $n \in \mathbb{N}$;
- (2) $g(n+1,x) \subset g(n,x)$ for all $n \in \mathbb{N}$;
- (3) $\{g(n,x): n \in \mathbb{N}, x \in X\}$ is an *sn*-network for X.

Remark 1.5. (1) Note that a weak base *g*-function is an *sn*-network *g*-function.

(2) If X is sequential, then g is an sn-network g-function if and only if g is a weak base g-function.

Let g be an sn-network g-function on X, let $\{x_n\}$ and $\{y_n\}$ be two sequences in X, and let $x \in X$. Consider the following conditions imposed on an sn-network g-function g for X.

- (E) If $x_n \in g(n, x)$ for all $n \in \mathbb{N}$, then $x_n \to x$.
- (F) If $x \in g(n, x_n)$ for all $n \in \mathbb{N}$, then $x_n \to x$.
- (WF) If $x \in g(n, x_n)$ for all $n \in \mathbb{N}$, then $x_{n_k} \to x$ for some subsequence $\{x_{n_k}\}$ of $\{x_n\}$.
- (G) If $x, x_n \in g(n, y_n)$ for all $n \in \mathbb{N}$, then $x_n \to x$.
- (GP) Each $\{g(n,x) : x \in X\}$ has the (P)-property and if $x, x_n \in g(n, y_n)$ for all $n \in \mathbb{N}$, then $x_n \to x$.
- (H) If $x_n \to x$ and $x_n \in g(n, y_n)$ for all $n \in \mathbb{N}$, then $y_n \to x$.
- (HLF) If $x_n \to x$ and $x_n \in g(n, y_n)$ for all $n \in \mathbb{N}$, then $y_n \to x$; and for each $x \in X$, there exists $U \in \tau$ such that $|\{U \cap g(n, y) : y \in X\}| < \omega$.
- (GLF) Each $\{g(n, x) : n \in \mathbb{N}\}$ is locally finite and g satisfies (G).
- (GPF) Each $\{g(n, x) : n \in \mathbb{N}\}$ is point-finite and g satisfies (G).

Definition 1.6. Let $\{\mathcal{P}_n : n \in \mathbb{N}\}$ be a sequence of covers of a space X.

- (1) $\bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}\$ is a σ -strong network for X [10] if \mathcal{P}_{n+1} refines \mathcal{P}_n for all $n \in \mathbb{N}$ and $\{\operatorname{St}(x, \mathcal{P}_n) : n \in \mathbb{N}\}\$ is a network at x for all $x \in X$.
- (2) $\bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}$ is a σ -(*P*)-strong network for *X* if it is a σ -strong network and each \mathcal{P}_n has the (*P*)-property.
- (3) $\bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}$ is a weak-development [13] if $\{\mathsf{St}(x, \mathcal{P}_n) : n \in \mathbb{N}\}$ is a weak base at x for all $x \in X$.
- (4) P is a σ-(P)-strong network consisting of sn-covers (cs-covers, cfp-covers, cs*-covers, respectively) if each P_n is an sn-cover (cscover, cfp-cover, cs*-cover, respectively).
- **Definition 1.7.** (1) X is a g-developable space [11] if X has a weak base g-function satisfying (G).
 - (2) X is an sn-developable space if X has an sn-network g-function satisfying (G).
 - (3) X is a strongly g-developable space [18] if X is a sequential space with a σ -locally finite strong network consisting of cs-covers.
 - (4) X is a strongly sn-developable space if X has a σ -locally finite strong network consisting of cs-covers.
- **Remark 1.8.** (1) Every *g*-developable space is an *sn*-developable space.

T. V. AN AND L. Q. TUYEN

- (2) Every strongly g-developable space is a strongly sn-developable space.
- (3) If X is sequential, then
 - (a) X is *sn*-developable if and only if it is *g*-developable;
 - (b) X is strongly *sn*-developable if and only if it is strongly *g*-developable.

Definition 1.9 ([13]). Let \mathcal{P} be a cover of a space X.

- (1) \mathcal{P} is uniform if for each $x \in X$ and \mathcal{G} is an infinite subfamily of $(\mathcal{P})_x$, then \mathcal{G} is a network at x in X.
- (2) \mathcal{P} is a uniform sn-network (a uniform weak base, respectively) if \mathcal{P} is both uniform and sn-network (weak base, respectively).
- (3) \mathcal{P} is *point-regular* if, for every $x \in U \in \tau$, the set $\{P \in (\mathcal{P})_x : P \notin U\}$ is finite.
- (4) P is a point-regular sn-network (a point-regular weak base, respectively) if P is both point-regular and sn-network (weak base, respectively).

Definition 1.10 ([8]). Let d be a d-function on a space X.

- (1) For each $x \in X$ and $n \in \mathbb{N}$, let $S_n(x) = \{y \in X : d(x,y) < 1/n\}$.
- (2) For every $P \subset X$, put $d(P) = \sup\{d(x, y) : x, y \in P\}$.
- (3) X is symmetric if $\{S_n(x) : n \in \mathbb{N}\}$ is a weak neighborhood base at x for all $x \in X$.
- (4) X is sn-symmetric if $\{S_n(x) : n \in \mathbb{N}\}$ is an sn-network at x for all $x \in X$.
- **Definition 1.11.** (1) A symmetric space (X, d) is called a *Cauchy* symmetric space ([19]) if every convergent sequence is *d*-Cauchy.
 - (2) An sn-symmetric space (X, d) is called a Cauchy sn-symmetric space [2] if every convergent sequence is d-Cauchy.

Remark 1.12. If X is a sequential space, then

- (1) X is a symmetric space if and only if it is an *sn*-symmetric space;
- (2) X is a Cauchy symmetric space if and only if it is a Cauchy sn-symmetric space.

Notation 1.13. Let $\bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}$ be a σ -strong network for a space X. For each $n \in \mathbb{N}$, put $\mathcal{P}_n = \{P_\alpha : \alpha \in \Lambda_n\}$ and endow Λ_n with the discrete topology. Then

$$M = \left\{ \alpha = (\alpha_n) \in \prod_{n \in \mathbb{N}} \Lambda_n : \{P_{\alpha_n}\} \text{ forms a network at some point } x_\alpha \in X \right\}$$

is a metric space and the point x_{α} is unique in X for every $\alpha \in M$. Define $f: M \to X$ by $f(\alpha) = x_{\alpha}$. Let us call (f, M, X, \mathcal{P}_n) a Ponomarev system following [15].

For some undefined or related concepts, we refer the reader to [10] and [13].

2. The MAIN RESULTS

Theorem 2.1. The following are equivalent for a space X:

- (1) X is an sn-first countable space;
- (2) there exists an sn-network g-function on X satisfying (E);
- (3) there exists an sn-network g-function on X.

Proof. (1) \Longrightarrow (2). Let $\mathcal{G} = \bigcup \{ \mathcal{G}_x : x \in X \}$ be an *sn*-network for X, where each $\mathcal{G}_x = \{ P_{n,x} : n \in \mathbb{N} \}$ is a countable *sn*-network at x. For each $n \in \mathbb{N}$ and $x \in X$, let

$$g(n,x) = \bigcap \{P_{i,x} : 1 \le i \le n\}.$$

Then g is an sn-network g-function on X. Assume that $\{x_n\}$ is a sequence in X and $x \in X$ such that $x_n \in g(n, x)$ for all $n \in \mathbb{N}$. Since g(n, x) is a decreasing network at x, it implies that $x_n \to x$. Thus, g satisfies (E).

 $(2) \Longrightarrow (3)$. Obvious.

 $(3) \Longrightarrow (1)$. For each $x \in X$, put $\mathcal{G}_x = \{g(n,x) : n \in \mathbb{N}\}$. Then each \mathcal{G}_x is a countable *sn*-network at *x*. Therefore, *X* is *sn*-first countable. \Box

Corollary 2.2. The following are equivalent for a space X:

- (1) X is a g-first countable space;
- (2) there exists a weak base g-function on X satisfying (E);
- (3) there exists a weak base g-function on X.

Theorem 2.3. The following are equivalent for a space X:

- (1) X is an sn-symmetric space;
- (2) X has a σ -strong network $\bigcup \{\mathcal{G}_n : n \in \mathbb{N}\}$ such that $\{\mathfrak{St}(x, \mathcal{G}_n) : n \in \mathbb{N}\}$ is an sn-network at x for all $x \in X$;
- (3) there exists an sn-network g-function on X satisfying (F);
- (4) there exists an sn-network g-function on X satisfying (WF).

Proof. (1) \implies (2). For each $n \in \mathbb{N}$, let $\mathcal{G}_n = \{P \subset X : d(P) < 1/n\}$. Then $\operatorname{St}(x, \mathcal{G}_n) = S_n(x)$ for all $n \in \mathbb{N}$ and $x \in X$. Therefore, $\bigcup \{\mathcal{G}_n : n \in \mathbb{N}\}$ is a σ -strong network and $\{\operatorname{St}(x, \mathcal{G}_n) : n \in \mathbb{N}\}$ is an *sn*-network at x for all $x \in X$.

(2) \implies (3). Assume that (2) holds. For each $x \in X$ and $n \in \mathbb{N}$, let $g(n, x) = \operatorname{St}(x, \mathcal{G}_n)$. Then g is an sn-network g-function on X. Now, let $\{x_n\}$ be a sequence in X and $x \in X$ such that $x \in g(n, x_n)$ for all $n \in \mathbb{N}$. Then $x_n \in \operatorname{St}(x, \mathcal{G}_n)$ for all $n \in \mathbb{N}$. Thus, $x_n \to x$.

 $(3) \Longrightarrow (4)$. Obvious.

(4) \implies (1). Let g be an sn-network g-function on X satisfying (WF). For each $x, y \in X$ with $x \neq y$, put $\delta(x, y) = \min\{n : x \notin g(n, y), y \notin g(n, x)\}$. Now, for each $x, y \in X$, denote

$$d(x,y) = \begin{cases} 0 & \text{if } x = y, \\ 1/\delta(x,y) & \text{if } x \neq y. \end{cases}$$

Then d is a d-function on X, and

- (a) for each $n \in \mathbb{N}$, there exists $n_0 \in \mathbb{N}$ such that $S_{n_0}(x) \subset g(n, x)$. If not, there exists $i_0 \in \mathbb{N}$ such that for each $n \in \mathbb{N}$, there exists $x_n \in S_n(x) - g(i_0, x)$. Since $x_n \in S_n(x)$, $\delta(x, x_n) > n$. Thus, $x \in g(n, x_n)$ or $x_n \in g(n, x)$ for all $n \in \mathbb{N}$. This follows that $x_{n_k} \to x$ for some subsequence $\{x_{n_k}\}$ of $\{x_n\}$. On the other hand, since each $g(i_0, x)$ is a sequential neighborhood at $x, \{x_{n_k}\}$ is eventually in $g(i_0, x)$. This is a contradiction to $x_n \notin g(i_0, x)$ for all $n \in \mathbb{N}$.
- (b) for each $n \in \mathbb{N}$, there exists $n_0 \in \mathbb{N}$ such that $g(n_0, x) \subset S_n(x)$. If not, there exists $i_0 \in \mathbb{N}$ such that for every $n \in \mathbb{N}$, there exists $x_n \in g(n, x) - S_{i_0}(x)$. Since $\{g(n, x) : n \in \mathbb{N}\}$ is a decreasing *sn*-network at x, it implies that $x_n \to x$. Thus, $\{x_n\}$ is eventually in $g(i_0, x)$. Pick $n \in \mathbb{N}$ such that $x_n \in g(i_0, x)$, then $\delta(x_n, x) > i_0$, so $x_n \in S_{i_0}(x)$. This is a contradiction to $x_n \notin S_{i_0}(x)$ for all $n \in \mathbb{N}$.

Then (a) and (b) imply that $\{S_n(x) : n \in \mathbb{N}\}$ is an *sn*-network at x for all $x \in X$, and X is *sn*-symmetric.

Corollary 2.4. The following are equivalent for a space X:

- (1) X is a symmetric space;
- (2) X has a weak-development;
- (3) there exists a weak base g-function on X satisfying (F);
- (4) there exists a weak base g-function on X satisfying (WF).

Theorem 2.5. The following are equivalent for a space X:

- (1) X is an sn-developable space;
- (2) X is a Cauchy sn-symmetric space;
- (3) X has a σ -strong network consisting of cs-covers;
- (4) X has a σ -strong network consisting of sn-covers;
- (5) X is a 1-sequence-covering and π -image of a metric space;
- (6) X is a sequence-covering and π -image of a metric space.

Proof. (1) \implies (2). Let g be an sn-network g-function satisfying (G). Then X is Cauchy sn-symmetric. In fact, for each $n \in \mathbb{N}$, put $\mathcal{G}_n = \{g(n,x) : x \in X\}$, and put $\delta(x,y) = \min\{n : x \notin \operatorname{St}(y,\mathcal{G}_n)\}$ for each

 $x, y \in X$ with $x \neq y$. Next, for each $x, y \in X$, we denote

$$d(x,y) = \begin{cases} 0 & \text{if } x = y, \\ 1/\delta(x,y) & \text{if } x \neq y. \end{cases}$$

Then d is a d-function on X and $S_n(x) = \text{St}(x, \mathcal{G}_n)$. Furthermore, we have

- (a) $\{S_n(x) : n \in \mathbb{N}\}\$ is a network at x for all $x \in X$. If not, there exist $x \in U \in \tau$ such that $S_n(x) \not\subset U$ for all $n \in \mathbb{N}$. Thus, for each $n \in \mathbb{N}$, there exists $x_n \in S_n(x) U$. Since $S_n(x) = \operatorname{St}(x, \mathcal{G}_n)$ for all $n \in \mathbb{N}$, it implies that for each $n \in \mathbb{N}$, there exists $y_n \in X$ such that $x, x_n \in g(n, y_n)$. By condition (G), $x_n \to x$, implying that $\{x_n\}$ is eventually in U. This is a contradiction.
- (b) Let $m, n \in \mathbb{N}$; we put $k = \max\{m, n\}$. Since \mathcal{G}_{i+1} refines \mathcal{G}_i and $S_i(x) = \operatorname{St}(x, \mathcal{G}_i)$ for all $i \in \mathbb{N}$, it implies that $S_k(x) \subset S_m(x) \cap S_n(x)$.
- (c) Since g(n,x) is a sequential neighborhood at x for all $x \in X$, and $g(n,x) \subset \operatorname{St}(x,\mathcal{G}_n) = S_n(x)$, it implies that each $S_n(x)$ is sequential neighborhood at x.

Then X is sn-symmetric. Now, let $\{x_i\}$ be a sequence in X, $x_i \to x$ and $\varepsilon > 0$. Take $n \in \mathbb{N}$ such that $1/n < \varepsilon$. Since g(n, x)is a sequential neighborhood at x, $\{x\} \bigcup \{x_i : i \ge m\} \subset g(n, x)$ for some $m \in \mathbb{N}$. Hence, $x_i \in \operatorname{St}(x_j, \mathcal{G}_n)$ for all $i, j \ge m$. This implies that $d(x_i, x_j) < 1/n < \varepsilon$ for all $i, j \ge m$. Therefore, X is Cauchy sn-symmetric.

(2) \implies (3). For each $n \in \mathbb{N}$, denote $\mathcal{G}_n = \{P \subset X : d(P) < 1/n\}$. Then $\operatorname{St}(x, \mathcal{G}_n) = S_n(x)$. Since X is Cauchy *sn*-symmetric, each \mathcal{G}_n is a *cs*-cover. Therefore, $\bigcup \{\mathcal{G}_n : n \in \mathbb{N}\}$ is a σ -strong network consisting of *cs*-covers.

(3) \implies (4). Let $\bigcup \{ \mathcal{P}_i : i \in \mathbb{N} \}$ be a σ -strong network consisting of *cs*-covers. For each $x, y \in X$ with $x \neq y$, put $\delta(x, y) = \min\{n : y \notin \operatorname{St}(x, \mathcal{P}_n)\}$, and denote

$$d(x,y) = \begin{cases} 0 & \text{if } x = y, \\ 1/\delta(x,y) & \text{if } x \neq y. \end{cases}$$

Then d is a d-function on X, and $S_n(x) = \operatorname{St}(x, \mathcal{P}_n)$ for all $n \in \mathbb{N}$. We claim that for each $x \in X$ and $\varepsilon > 0$, there exists $k = k(x, \varepsilon) \in \mathbb{N}$ such that d(x, y) < 1/k and d(x, z) < 1/k imply $d(y, z) < \varepsilon$. Otherwise, there exist $x_0 \in X$, $\varepsilon_0 > 0$, and two sequences $\{y_n\}$ and $\{z_n\}$ in X such that $d(y_n, z_n) \ge \varepsilon_0$ whenever $d(x_0, y_n) < 1/n$ and $d(x_0, z_n) < 1/n$. Since $\bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}$ is a σ -strong network, $\{y_n\}$ and $\{z_n\}$ converge to x_0 . Now, we choose $i \in \mathbb{N}$ such that $1/i < \varepsilon_0$. Since \mathcal{P}_i is a *cs*-cover for X, $\{y_m, z_m\} \subset P$ for some $m \in \mathbb{N}$ and $P \in \mathcal{P}_i$. Thus, $y_m \in \operatorname{St}(z_m, \mathcal{P}_i)$, implying that $d(y_m, z_m) = 1/\delta(y_m, z_m) < 1/i < \varepsilon_0$. This is a contradiction.

Now, for each $x \in X$ and $n \in \mathbb{N}$, denote $k_{x,n} = k(x, 1/n)$ such that d(y, z) < 1/n whenever $d(x, y) < 1/k_{x,n}$ and $d(x, z) < 1/k_{x,n}$. Without loss of generality, we can assume that $k_{x,n+1} > k_{x,n}$ for all $n \in \mathbb{N}$. Put $\mathcal{G}_n = \{S_{k_{x,n}}(x) : x \in X\}$ for every $n \in \mathbb{N}$. It is obvious that each \mathcal{G}_n is an *sn*-cover and \mathcal{G}_{n+1} refines \mathcal{G}_n for all $n \in \mathbb{N}$. Furthermore, $\bigcup \{\mathcal{G}_n : n \in \mathbb{N}\}$ is a σ -strong network. If not, there exist $x \in U \in \tau$ such that $\operatorname{St}(x, \mathcal{G}_n) \not\subset U$ for all $n \in \mathbb{N}$. Thus, for each $n \in \mathbb{N}$, there exists $x_n \in \operatorname{St}(x, \mathcal{G}_n) - U$. It follows that there exists $y_n \in X$ such that $x \in S_{k_{y_n,n}}(y_n)$ and $x_n \in S_{k_{y_n,n}}(y_n) - U$ for every $n \in \mathbb{N}$. Then $d(x, y_n) < 1/k_{y_n,n}$ and $d(x_n, y_n) < 1/k_{y_n,n}$. This implies that $d(x, x_n) < 1/n$. Thus, $x_n \to x$, a contradiction. Hence, $\bigcup \{\mathcal{G}_n : n \in \mathbb{N}\}$ is a σ -strong network consisting of *sn*-covers.

(4) \Longrightarrow (1). Let $\bigcup \{\mathcal{G}_n : n \in \mathbb{N}\}$ be a σ -strong network consisting of *sn*-covers. Then, for each $n \in \mathbb{N}$ and $x \in X$, there is $i(n,x) \in \mathbb{N}$ such that $S_{i(n,x)}(x) \subset P$ for some $P \in \mathcal{G}_n$, and i(n,x) < i(n+1,x). Now, for each $n \in \mathbb{N}$ and $x \in X$, we put $g(n,x) = S_{i(n,x)}(x)$. Then $g: \mathbb{N} \times X \to \mathcal{P}(X)$ is an *sn*-network *g*-function on *X*. Next, let $\{x_n\}$ and $\{y_n\}$ be two sequences in *X* and $x \in X$ satisfying that $x, x_n \in g(n, y_n)$ for all $n \in \mathbb{N}$. Then $x_n \to x$. In fact, let $x \in U \in \tau$. Since $\bigcup \{\mathcal{G}_n : n \in \mathbb{N}\}$ is a σ -strong network, there exists $n_0 \in \mathbb{N}$ such that $\operatorname{St}(x, \mathcal{G}_n) \subset U$ for all $n \geq n_0$. Since $x \in g(n, y_n)$ for all $n \in \mathbb{N}$, it implies that $g(n, y_n) \subset U$ for all $n \geq n_0$. Thus, $x_n \in U$ for all $n \geq n_0$. Hence, $x_n \to x$.

 $(4) \Longrightarrow (5)$. By [18, Lemma 2.2] and [9, Theorem 3.10].

- $(5) \Longrightarrow (6)$. Obvious.
- $(6) \Longrightarrow (3)$. By [10, Proposition 16(3b)].

Corollary 2.6. The following are equivalent for a space X:

- (1) X is a g-developable space;
- (2) X is a Cauchy symmetric space;
- (3) X has a weak-development consisting of cs-covers;
- (4) X has a weak-development consisting of sn-covers;
- (5) X is a weak-open and π -image of a metric space.

Theorem 2.7. The following are equivalent for a space X:

- (1) X is an sn-metrizable space;
- (2) there exists an sn-network g-function on X satisfying (HLF);
- (3) X has a σ -locally finite strong network consisting of cfp-covers;
- (4) X has a σ -locally finite strong network consisting of cs^* -covers;

- (5) X is a compact-covering compact and mssc-image of a metric space;
- (6) X is a sequentially-quotient π and mssc-image of a metric space;
- (7) X is a 1-sequence-covering and mssc-image of a metric space.

Proof. (1) \implies (2). Let $\mathcal{G} = \bigcup \{\mathcal{G}_n : n \in \mathbb{N}\} = \bigcup \{\mathcal{G}_x : x \in X\}$ be an *sn*-network, where each \mathcal{G}_n is locally finite and each \mathcal{G}_x is an *sn*-network at x. Without loss of generality, we can assume that each \mathcal{G}_n is a discrete collection of closed subsets of X (see [5]). For each $n \in \mathbb{N}$ and $x \in X$, we put

$$h(n,x) = \begin{cases} P \in \mathcal{G}_n & \text{if } \mathcal{G}_n \cap \mathcal{G}_x \neq \emptyset, \\ X - \bigcup \{P \in \mathcal{G}_n : x \notin P\} & \text{if } \mathcal{G}_n \cap \mathcal{G}_x = \emptyset. \end{cases}$$

For each $x \in X$ and $n \in \mathbb{N}$, there exists $U \in \tau$ such that $x \in U$ and U meets at most only an element of \mathcal{G}_n . Since

$$\{U \cap h(n,x) : x \in X\} \subset \\ \{U\} \cup \{U - P : P \in \mathcal{G}_n\} \cup \{U \cap P : P \in \mathcal{G}_n, U \cap P \neq \emptyset\},\$$

it implies that $|\{U \cap h(n,x) : x \in X\}| < \omega$ for all $n \in \mathbb{N}$. Next, we shall show that every h(n,x) is a sequential neighborhood at x. In fact, let $\{x_n\}$ be a sequence in X where $x_n \to x$. If $\mathcal{G}_n \cap \mathcal{G}_x \neq \emptyset$, then $h(n,x) = P \in \mathcal{G}_n \cap \mathcal{G}_x$, and $\{x_n\}$ is eventually in h(n,x). If $\mathcal{G}_n \cap \mathcal{G}_x = \emptyset$, then $h(n,x) = X - \bigcup \{P \in \mathcal{G}_n : x \notin P\}$. Since \mathcal{G}_n is discrete, $\bigcup \{P \in \mathcal{G}_n : x \notin P\}$ is closed. This implies that h(n,x) is open. Therefore, each h(n,x) is a sequential neighborhood at x.

Now, we put $g(n,x) = \bigcap \{h(k,x) : 1 \le k \le n\}$ for each $n \in \mathbb{N}$ and $x \in X$. It is easy to see that $g : \mathbb{N} \times X \to \mathcal{P}(X)$ is an *sn*-network *g*-function on *X*, and for each $x \in X$, there exists $U \in \tau$ such that $|\{U \cap g(n,x) : x \in X\}| < \omega$ for all $n \in \mathbb{N}$.

Next, let $\{x_i\}$ and $\{y_i\}$ be two sequences in X such that $x_i \to x \in X$, $x_i \in g(i, y_i)$ for all $i \in \mathbb{N}$, and $x \in V \in \tau$. Then there is $n \in \mathbb{N}$ such that $P \subset V$ for some $P \in \mathcal{G}_n \cap \mathcal{G}_x$, and $\{x\} \bigcup \{x_i : i \ge m\} \subset P$ for some $m \in \mathbb{N}$. Since $x_i \in g(i, y_i) \cap P$ for all $i \ge m$, $y_i \in P$ for all $i \ge m$. This implies that $\{y_n\}$ is eventually in P. Therefore, $y_n \to x$.

Then g is an *sn*-network g-function on X satisfying (HLF).

(2) \Longrightarrow (3). Let g be an sn-network g-function on X satisfying (HLF). For each $n \in \mathbb{N}$ and $x \in X$, let

$$h(n,x) = \bigcap \{g(n,y) : x \in g(n,y)\} - \bigcup \{g(n,y) : x \notin g(n,y)\}.$$

Then $x \in h(n, x) \subset g(n, x)$. Put

$$\mathcal{H}_n = \{h(n, x) : x \in X\}$$
 and $\mathcal{G}_n = \{\overline{h(n, x)} : x \in X\};$

we have

- (a) if $y \in h(n, x)$, then $x \in h(n, y)$. In fact, since $y \in h(n, x)$, it implies that $y \in g(n, z)$ if $x \in g(n, z)$ and $y \notin g(n, z)$ if $x \notin g(n, z)$. This follows that $x \in g(n, z)$ if and only if $y \in g(n, z)$. Therefore, $x \in h(n, y)$.
- (b) \mathcal{G}_n is locally finite. Let $x \in X$; then there exists $U \in \tau$ such that $|\{U \cap g(n, y) : y \in X\}| < \omega$. It implies that $|\{U \cap h(n, y) : y \in X\}| < \omega$. Firstly, we prove that for each $n \in \mathbb{N}$, \mathcal{H}_n is a partition of X. Indeed,
 - Case 1. if $\{x, y\} \subset g(n, z)$ for all $z \in X$, then $h(n, x) = h(n, y) = \bigcap \{g(n, z) : \{x, y\} \subset g(n, z)\};$

Case 2. if there exists $z \in X$ such that $x \in g(n, z)$ and $y \notin g(n, z)$, then $h(n, x) \subset g(n, z)$ and $h(n, y) \cap g(n, z) = \emptyset$. Thus, $h(n, x) \cap h(n, y) = \emptyset$;

Case 3. if there exists $z \in X$ such that $x \notin g(n, z)$ and $y \in g(n, z)$, then $h(n, x) \cap g(n, z) = \emptyset$ and $h(n, y) \subset g(n, z)$. Thus, $h(n, x) \cap h(n, y) = \emptyset$.

Then h(n,x) = h(n,y) or $h(n,x) \cap h(n,y) = \emptyset$ for all $x, y \in X$. Therefore, \mathcal{H}_n is a partition of X.

Next, since each \mathcal{H}_n is a partition of X, U meets only finitely many members h(n, y). Thus, each \mathcal{H}_n is locally finite. Therefore, each \mathcal{G}_n is locally finite.

(c) $\{\operatorname{St}(x,\mathcal{G}_n): n \in \mathbb{N}\}\$ is a network at x for all $x \in X$. Let $x \in U \in \tau$; since X is regular, there exists $V \in \tau$ such that $x \in \overline{V} \subset U$. Then there exists $n_0 \in \mathbb{N}$ such that $\operatorname{St}(x,\mathcal{H}_{n_0}) \subset V$. If not, for each $n \in \mathbb{N}$, there exists $y_n \in \operatorname{St}(x,\mathcal{H}_n) - V$. Then, for each $n \in \mathbb{N}$, there exists z_n such that $x, y_n \in h(n, z_n)$. By (a), $z_n \in h(n, x) \subset$ g(n,x) for all $n \in \mathbb{N}$. Since $\{g(n,x): n \in \mathbb{N}\}\$ is a decreasing network at $x, z_n \to x$. On the other hand, since $y_n \in h(n, z_n)$, it follows from (a) that $z_n \in h(n, y_n) \subset g(n, y_n)$. By property (HLF) of g, it implies that $y_n \to x$. This is a contradiction. Thus, there exists $n_0 \in \mathbb{N}$ such that $\operatorname{St}(x, \mathcal{H}_{n_0}) \subset V$. From (b) this implies that $\operatorname{St}(x, \mathcal{G}_{n_0}) \subset U$.

Finally, for each $n \in \mathbb{N}$, put $\mathcal{Q}_n = \bigwedge \{ \mathcal{G}_i : i \leq n \}$. Then, since each \mathcal{G}_n is a locally finite closed cover, it follows that $\bigcup \{ \mathcal{Q}_n : n \in \mathbb{N} \}$ is a σ -locally finite network consisting of cfp-covers.

 $(3) \Longrightarrow (4)$. Obvious.

(4) \implies (1). Assume that (4) holds. Then X is an *sn*-first countable and \aleph -space. Therefore, X is *sn*-metrizable.

- $(3) \Longrightarrow (5)$. By [18, Lemma 2.2].
- $(5) \Longrightarrow (6)$. Obvious.

 $(6) \Longrightarrow (1)$. By [6, Lemma 3.1] and [7, Theorem 5].

 $(1) \implies (7)$. If (1) holds, then X is a sequence-covering and *mssc*image of a metric space by [7, Theorem 5]. Since X is *sn*-first countable, it follows from [1, Proposition 2.2] that X is a 1-sequence-covering and *mssc*-image of a metric space.

 $(7) \implies (1)$. Assume that (7) holds. Then X is an *sn*-first countable space. Furthermore, it follows from [7, Theorem 5] that X is an \aleph -space. Therefore, X is an *sn*-metrizable space.

Corollary 2.8. The following are equivalent for a space X:

- (1) X is a g-metrizable space;
- (2) there exists a weak base g-function on X satisfying (HLF);
- (3) X is a weak-development consisting of locally finite cfp-covers;
- (4) X is a weak-development consisting of locally finite cs^* -covers;
- (5) X is a compact-covering quotient compact and mssc-image of a metric space;
- (6) X is a quotient π and mssc-image of a metric space;
- (7) X is a weak-open and mssc-image of a metric space.

Theorem 2.9. The following are equivalent for a space X:

- (1) X is a Cauchy sn-symmetric space with a σ -(P)-property snnetwork;
- (2) X has a σ -(P)-strong network consisting of cs-covers;
- (3) X has a σ -(P)-strong network consisting of sn-covers;
- (4) there exists an sn-network g-function on X satisfying (GP).

Proof. (1) \iff (2) \iff (3). By [2, Theorem 2.3].

(3) \Longrightarrow (4). Let $\bigcup \{\mathcal{G}_n : n \in \mathbb{N}\}$ be a σ -(P)-strong network consisting of sn-covers. Then, for each $n \in \mathbb{N}$ and $x \in X$, there is $i(n, x) \in \mathbb{N}$ such that $S_{i(n,x)}(x) \subset Q$ for some $Q \in \mathcal{G}_n$, and i(n, x) < i(n + 1, x). Now, we put $g(n, x) = S_{i(n,x)}(x)$ for every $n \in \mathbb{N}$ and $x \in X$. Then $g : \mathbb{N} \times X \to \mathcal{P}(X)$ is an sn-network g-function on X and each $\{g(n, x) : x \in X\}$ has (P)-property. Now, let $\{x_n\}$ and $\{y_n\}$ be two sequences in X and $x \in X$ such that $x, x_n \in g(n, y_n)$ for all $n \in \mathbb{N}$. Then $x_n \to x$. In fact, let $x \in U \in \tau$. Since $\bigcup \{\mathcal{G}_n : n \in \mathbb{N}\}$ is a σ -strong network, there exists $n_0 \in \mathbb{N}$ such that $\operatorname{St}(x, \mathcal{G}_n) \subset U$ for all $n \geq n_0$. Since $x \in g(n, y_n)$ for all $n \in \mathbb{N}$, it implies that $g(n, y_n) \subset U$ for all $n \geq n_0$. Thus, $x_n \in U$ for all $n \geq n_0$, and $x_n \to x$. Therefore, g satisfies (GP).

(4) \implies (1). Let g be an sn-network g-function satisfying (GP). For each $n \in \mathbb{N}$, put $\mathcal{G}_n = \{g(n, x) : x \in X\}$. Then $\mathcal{G} = \bigcup \{\mathcal{G}_n : n \in \mathbb{N}\}$ is an sn-network with σ -(P)-property. Now, for each $x, y \in X$ with $x \neq y$, put $\delta(x, y) = \min\{n : x \notin \operatorname{St}(y, \mathcal{G}_n)\}, \text{ and denote }$

$$d(x,y) = \begin{cases} 0 & \text{if } x = y, \\ 1/\delta(x,y) & \text{if } x \neq y. \end{cases}$$

Then d is a d-function on X and $S_n(x) = \operatorname{St}(x, \mathcal{G}_n)$ for all $n \in \mathbb{N}$. We shall show that $\{S_n(x) : n \in \mathbb{N}\}$ is a network at x for all $x \in X$. If not, there exist $x \in U \in \tau$ such that $S_n(x) \not\subset U$ for all $n \in \mathbb{N}$. Thus, for each $n \in \mathbb{N}$, there exists $x_n \in S_n(x) - U$. Since $S_n(x) = \operatorname{St}(x, \mathcal{G}_n)$ for all $n \in \mathbb{N}$, it implies that for each $n \in \mathbb{N}$, there exists $y_n \in X$ such that $x, x_n \in g(n, y_n)$. By condition (G), $x_n \to x$, a contradiction. This follows that X is sn-symmetric. Now, let $\{x_i\}$ be a sequence in $X, x_i \to x$, and $\varepsilon > 0$. Take $n \in \mathbb{N}$ such that $1/n < \varepsilon$. Since $\{x\} \bigcup \{x_i : i \geq m\} \subset g(n, x)$ for some $m \in \mathbb{N}$, we have $x_i \in \operatorname{St}(x_j, \mathcal{G}_n)$ for all $i, j \geq m$. This implies that $d(x_i, x_j) < 1/n < \varepsilon$ for all $i, j \geq m$. Therefore, X is Cauchy sn-symmetric with a σ -(P)-property sn-network.

Corollary 2.10. The following are equivalent for a space X:

- (1) X is a Cauchy symmetric space with a σ -(P)-property weak base;
- (2) X has a weak-development consisting of (P)-property cs-covers;
- (3) X has a weak-development consisting of (P)-property sn-covers;
- (4) there exists a weak base g-function g on X satisfying (GP).

In case (P) is locally finite, we have the following.

Corollary 2.11. The following are equivalent for a space X:

- (1) X is an sn-developable and sn-metrizable space;
- (2) X is a strongly sn-developable space;
- (3) X has a σ -locally finite strong network consisting of sn-covers;
- (4) there exists an sn-network g-function g on X satisfying (GLF);
- (5) X is a 1-sequence-covering compact and mssc-image of a metric space;
- (6) X is a 1-sequence-covering compact and σ -image of a metric space;
- (7) X is a sequence-covering π and σ -image of a metric space.

Proof. (1) \iff (2) \iff (3) \iff (4). By Theorem 2.9.

(3) \implies (5). Let $\bigcup \{\mathcal{G}_n : n \in \mathbb{N}\}\)$ be a σ -locally finite strong network consisting of *sn*-covers. Consider the Ponomarev system (f, M, X, \mathcal{G}_n) . By [18, Lemma 2.2], f is a sequence-covering and compact map. Thus, f is a 1-sequence-covering map by [1, Theorem 2.5]. Furthermore, since each \mathcal{G}_n is locally finite, f is an *mssc*-map. Hence, (5) holds.

- $(5) \Longrightarrow (6)$. By [15, Lemma 17].
- $(6) \Longrightarrow (7)$. Obvious.

 $(7) \Longrightarrow (1)$. Let $f: M \to X$ be a sequence-covering π - and σ -map and M be a metric space. By Theorem 2.5, X is an *sn*-developable space. This implies that X is an *sn*-first countable space by Theorem 2.1. On the other hand, since f is a sequence-covering and σ -map, this implies that X is an \aleph -space. Therefore, X is an *sn*-metrizable space. \Box

Corollary 2.12. The following are equivalent for a space X:

- (1) X is a g-developable and g-metrizable space;
- (2) X is a strongly g-developable space;
- (3) X has a weak-development consisting of locally finite sn-covers;
- (4) there exists a weak base g-function g on X satisfying (GLF);
- (5) X is a weak-open compact-covering compact and mssc-image of a metric space;
- (6) X is a weak-open compact-covering compact and σ-image of a metric space;
- (7) X is a weak-open π and σ -image of a metric space.

Proof. By [1, Corollary 2.8] and Corollary 2.11, we only need to prove that $(3) \Longrightarrow (5)$. Let $\bigcup \{\mathcal{G}_n : n \in \mathbb{N}\}$ be a weak-development consisting of locally finite *sn*-covers. We can assume that \mathcal{G}_{n+1} refines \mathcal{G}_n for all $n \in \mathbb{N}$. By using the proof of [18, Lemma 3.10], it follows that each \mathcal{G}_n is a *cfp*cover. Consider the Ponomarev system (f, M, X, \mathcal{G}_n) . By [18, Lemma 2.2], f is a sequence-covering compact-covering quotient and compact map. Thus, f is a weak-open map by [1, Corollary 2.9]. Furthermore, since each \mathcal{G}_n is locally finite, f is an *mssc*-map. \Box

In case (P) is point-finite, by Theorem 2.9 and [13, Theorem 3.3.8], we have the following corollaries.

Corollary 2.13. The following are equivalent for a space X:

- (1) X has a uniform sn-network.
- (2) X has a point-regular sn-network;
- (3) there exists an sn-network g-function g on X satisfying (GPF);
- (4) X is a 1-sequence-covering and compact image of a metric space;
- (5) X is a sequence-covering and compact image of a metric space.

Corollary 2.14. The following are equivalent for a space X:

- (1) X has a uniform weak base:
- (2) X has a point-regular weak base;
- (3) there exists a weak base g-function g on X satisfying (GPF);
- (4) X is a weak-open and compact image of a metric space;
- (5) X is a weak-open and compact image of a metric space.

Example 2.15. Let $X = \mathbb{N} \cup \{p\}$ where $p \in \beta \mathbb{N} - \mathbb{N}$. Endow X with discrete topology. Then X is a metric space. Put $Y = \mathbb{N} \cup \{p\}$ and endow

Y with the subspace topology of $\beta \mathbb{N}$, then Y is not a k-space. Define $f: X \to Y$ by f(x) = x for each $x \in X$. It is easy to see that f is a 1-sequence-covering and compact map. Hence, by Theorem 2.5, it follows that

- (1) not every sn-developable space is g-developable;
- (2) not every Cauchy *sn*-symmetric space is Cauchy symmetric;
- (3) Not every *sn*-symmetric space is symmetric.

Acknowledgment. The authors would like to express their thanks to referee for his/her helpful comments and valuable suggestions.

References

- Tran Van An and Luong Quoc Tuyen, Further properties of 1-sequence-covering maps, Comment. Math. Univ. Carolin. 49 (2008), no. 3, 477-484.
- [2] Tran Van An and Luong Quoc Tuyen, Cauchy sn-symmetric spaces with a csnetwork (cs^{*}-network) having property σ -(P), Topology Proc. **51** (2018), 61–75.
- [3] A. V. Arhangel'skiĭ, Mappings and spaces, Russian Math. Surveys 21 (1966), no. 4, 115-162.
- [4] Zhi Min Gao, Metrizability of spaces and weak base g-functions, Topology Appl. 146/147 (2005), 279-288.
- [5] Ying Ge, On sn-metrizable spaces (Chinese), Acta Math. Sinica (Chin. Ser.) 45 (2002), no. 2, 355-360.
- [6] Ying Ge, Characterizations of sn-metrizable spaces, Publ. Inst. Math. (Beograd) (N.S.) 74(88) (2003), 121-128.
- [7] Ying Ge, ℵ-spaces and mssc-images of metric spaces, J. Math. Res. Exposition 24 (2004), no. 2, 198-202.
- [8] Ying Ge and Shou Lin, g-metrizable spaces and the images of semi-metric spaces, Czechoslovak Math. J. 57(132) (2007), no. 4, 1141-1149.
- [9] Ying Ge and Shou Lin, On Ponomarev-systems, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 10 (2007), no. 2, 455-467.
- [10] Y. Ikeda, C. Liu, and Y. Tanaka, Quotient compact images of metric spaces, and related matters, Topology Appl. 122 (2002), no. 1-2, 237-252.
- [11] Kyung Bai Lee, On certain g-first countable spaces, Pacific J. Math. 65 (1976), no. 1, 113-118.
- [12] Shou Lin, Sequence-covering s-mappings (Chinese), Adv. in Math. (China) 25 (1996), no. 6, 548-551.
- [13] Shou Lin, Point-Countable Covers and Sequence-Covering Mappings (Chinese). With a preface by A. V. Arhangel'skii. Beijing: Chinese Science Press, 2002.
- [14] Shou Lin and Yoshio Tanaka, Point-countable k-networks, closed maps, and related results, Topology Appl. 59 (1994), no. 1, 79-86.
- [15] Shou Lin and Pengfei Yan, Notes on cfp-covers, Comment. Math. Univ. Carolin. 44 (2003), no. 2, 295-306.

- [16] A. M. Mohamad, Conditions which imply metrizability in some generalized metric spaces, Topology Proc. 24 (1999), Spring, 215-232.
- [17] Frank Siwiec, On defining a space by a weak base, Pacific J. Math. 52 (1974), 233-245.
- [18] Y. Tanaka and Y. Ge, Around quotient compact images of metric spaces, and symmetric spaces, Houston J. Math. 32 (2006), no. 1, 99-117.
- [19] N. V. Veličko, Symmetrizable spaces, Math. Notes 12 (1972), 784-786 (1973).

(An) Department of Mathematics; Vinh University; Vinh City, Viet Nam $\mathit{Email}\ address: \texttt{andhv@yahoo.com}$

(Tuyen) Department of Mathematics; Da Nang University; Da Nang City, Viet Nam

Email address: tuyendhdn@gmail.com