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SPACES WITH sn-NETWORK g¢g-FUNCTIONS

TRAN VAN AN AND LUONG QUOC TUYEN

ABsTrACT. In this paper, we introduce the concepts of an sn-
network g-function, an sn-developable space, and a strongly sn-
developable space as generalizations of a “weak base g-function,”
a “g-developable space,” and a “strongly g-developable space,” re-
spectively. Then we give some characterizations of sn-symmetric
spaces, Cauchy sn-symmetric spaces, sn-metrizable spaces, and
Cauchy sn-symmetric spaces with o-(P)-property sn-networks.

1. INTRODUCTION

In [11], Kyung Bai Lee introduced CWC-maps and g-developable spaces
and gave some characterizations of g-developable spaces. Later, Zhi Min
Gao [4] introduced the notion of weak base g-functions by means of weak
bases to study the metrizability of a topological space. In 2006, Y. Tanaka
and Y. Ge [18] introduced strongly g-developable spaces and gave some
characterizations of g-developable spaces.

In this paper, we introduce the concepts of an sn-network g-function,
an sn-developable space, and a strongly sn-developable space as gener-
alizations of a “weak base g-function,” a “g-developable space,” and a
“strongly g-developable space,” respectively. Then we give some char-
acterizations of sn-symmetric spaces, Cauchy sn-symmetric spaces, sn-
metrizable spaces, and Cauchy sn-symmetric spaces with o-(P)-property
sn-networks.

Throughout this paper, all spaces are assumed to be 7} and regular
and N denotes the set of all natural numbers. Given two families P and
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178 T. V. AN AND L. Q. TUYEN

Q of subsets of X, we denote PAQ = {PNQ: P e P,Q € Q} and
(P)., = {P € P :x € P}. For a sequence {z,} converging to x and
P C X, we say that {z,} is eventually in P if {z}J{zn : n > m} C P
for some m € N and {z,} is frequently in P if some subsequence of {z,}
is eventually in P.

Definition 1.1. For a cover P of a space X, let (P) be one of the follow-
ing properties: point-finite, compact-finite, locally finite, point-countable,
compact-countable, or locally countable. We say that P has the o-(P)-
property if P can be expressed as | J{P, : n € N} where each P,, has the
(P)-property.

Definition 1.2. Let P = |J{P. : © € X} be a cover of a space X such
that for every x € X, P, is a network at =, and if P,P, € P,, then
P c PLN P, for some P € P,.

(1) P is a weak base [3], if for G C X, G is open in X if and only if
for every = € G, there exists P € P, such that P C G; P, is said
to be a weak neighborhood base at x.

(2) P is an sn-network [12], if each element of P, is a sequential
neighborhood of z for all € X; P, is said to be an sn-network
at .

(3) X is sn-first countable [5] (g-first countable, respectively [17]), if
there is a countable sn-network (a countable weak neighborhood
base, respectively) at = in X for all z € X.

(4) X is sn-metrizable [5] (g-metrizable, respectively [17]), if X has a
o-locally finite sn-network (weak base, respectively).

Definition 1.3 ([4]). A function ¢ : N x X — P(X) is a weak base
g-function if it satisfies the following conditions:

(1) x € g(n,x) for all z € X and n € N;
(2) g(n+1,2) C g(n,z) for all n € N;
(3) {g9(n,z) :n €N,z € X} is a weak base for X.

Note that weak base g-functions were called CWC-maps and CWBC-maps
in [11] and [16], respectively.

Definition 1.4. A function g : N x X — P(X) is an sn-network g-
function if it satisfies the following conditions:

(1) z € g(n,x) for all x € X and n € N;
(2) g(n+1,2) C g(n,z) for all n € N;
(3) {g(n,z) :n e N,z € X} is an sn-network for X.

Remark 1.5. (1) Note that a weak base g-function is an sn-network
g-function.
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(2) If X is sequential, then g is an sn-network g-function if and only
if g is a weak base g-function.

Let g be an sn-network g-function on X, let {x,} and {y,.} be two
sequences in X, and let x € X. Consider the following conditions imposed
on an sn-network g-function g for X.

(E) If z,, € g(n,z) for all n € N, then z,, — =.
(F) If z € g(n,x,) for all n € N, then z,, — =.
(WF) If z € g(n,z,) for all n € N, then z,,, — z for some subsequence
{zn,} of {z,}.
(G) If z,x, € g(n,yy) for all n € N, then =, — x.
(GP) Each {g(n,z) : * € X} has the (P)-property and if z,z, €
g(n,yn) for all n € N, then x,, — x.
(H) If z,, » = and z,, € g(n,y,) for all n € N, then y,, — =.
(HLF) If 2, — = and z,, € g(n,y,) for all n € N, then y, — z; and
for each z € X, there exists U € 7 such that [{U Ng(n,y) : y €
X} < w.
(GLF) Each {g(n,z) : n € N} is locally finite and g satisfies (G).
(GPF) Each {g(n,x) : n € N} is point-finite and g satisfies (G).

Definition 1.6. Let {P, : n € N} be a sequence of covers of a space X.

(1) |U{Pn : n € N} is a o-strong network for X [10] if P41 refines
Py for all n € N and {St(z,P,) : n € N} is a network at « for all
z e X.

(2) U{Pn : n € N} is a 0-(P)-strong network for X if it is a o-strong
network and each P,, has the (P)-property.

(3) U{Pn : n € N} is a weak-development [13] if {St(z,P,) : n € N}
is a weak base at x for all x € X.

(4) P is a o-(P)-strong network consisting of sn-covers (cs-covers,
cfp-covers, cs*-covers, respectively) if each P, is an sn-cover (cs-
cover, cfp-cover, cs*-cover, respectively).

Definition 1.7. (1) X is a g-developable space [11] if X has a weak

base g-function satisfying (G).

(2) X is an sn-developable space if X has an sn-network g-function
satisfying (G).

(3) X is a strongly g-developable space [18] if X is a sequential space
with a o-locally finite strong network consisting of cs-covers.

(4) X is a strongly sn-developable space if X has a o-locally finite
strong network consisting of cs-covers.

Remark 1.8. (1) Every g-developable space is an sn-developable
space.
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(2) Every strongly g-developable space is a strongly sn-developable
space.
(3) If X is sequential, then
(a) X is sn-developable if and only if it is g-developable;
(b) X is strongly sn-developable if and only if it is strongly g-
developable.

Definition 1.9 ([13]). Let P be a cover of a space X.

(1) P is uniform if for each € X and G is an infinite subfamily of
(P)., then G is a network at x in X.

(2) P is a uniform sn-network (a uniform weak base, respectively) if
P is both uniform and sn-network (weak base, respectively).

(3) P is point-regular if, for every © € U € 1, the set {P € (P), :
P ¢ U} is finite.

(4) P is a point-reqular sn-network (a point-regular weak base, re-
spectively) if P is both point-regular and sn-network (weak base,
respectively).

Definition 1.10 ([8]). Let d be a d-function on a space X.
(1) For each x € X and n € N, let S,,(z) = {y € X : d(z,y) < 1/n}.
(2) For every P C X, put d(P) = sup{d(z,y) : z,y € P}.
(3) X is symmetric if {S,(x) : n € N} is a weak neighborhood base
at x for all z € X.
(4) X is sn-symmetric if {S,(x) : n € N} is an sn-network at z for
all v € X.

Definition 1.11. (1) A symmetric space (X,d) is called a Cauchy

symmetric space ([19]) if every convergent sequence is d-Cauchy.

(2) An sn-symmetric space (X,d) is called a Cauchy sn-symmetric
space [2] if every convergent sequence is d-Cauchy.

Remark 1.12. If X is a sequential space, then

(1) X is a symmetric space if and only if it is an sn-symmetric space;
(2) X is a Cauchy symmetric space if and only if it is a Cauchy sn-
symmetric space.

Notation 1.13. Let |J{P, : n € N} be a o-strong network for a space
X. For each n € N, put P, = {P, : @ € A,} and endow A,, with the
discrete topology. Then

M= {a = (o) € H A, i {P,, } forms a network at some point z, € X}
neN

is a metric space and the point z,, is unique in X for every o € M. Define

f:M— X by f(a) =x4. Let us call (f, M, X,P,) a Ponomarev system

following [15].
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For some undefined or related concepts, we refer the reader to [10] and
[13].

2. THE MAIN RESULTS

Theorem 2.1. The following are equivalent for a space X :

(1) X is an sn-first countable space;
(2) there exists an sn-network g-function on X satisfying (E);
(3) there exists an sn-network g-function on X.

Proof. (1) = (2). Let G = U{G, : ® € X} be an sn-network for X,
where each G, = {P, . : n € N} is a countable sn-network at z. For each
ne€Nand z € X, let

gn,z) =({Piz:1<i<n}.

Then g is an sn-network g-function on X. Assume that {z,} is a sequence
in X and z € X such that z,, € g(n,z) for all n € N. Since g(n,z) is a
decreasing network at x, it implies that x,, — . Thus, g satisfies (E).
(2) = (3). Obvious.
(3) = (1). For each z € X, put G, = {g(n,z) : n € N}. Then each
G is a countable sn-network at x. Therefore, X is sn-first countable. O

Corollary 2.2. The following are equivalent for a space X :

(1) X is a g-first countable space;
(2) there exists a weak base g-function on X satisfying (E);
(3) there exists a weak base g-function on X.

Theorem 2.3. The following are equivalent for a space X :
(1) X is an sn-symmetric space;
(2) X has a o-strong network |J{G, : n € N} such that {St(z,G,) :
n € N} is an sn-network at © for all x € X;
(3) there ezists an sn-network g-function on X satisfying (F);
(4) there exists an sn-network g-function on X satisfying (WF).

Proof. (1) = (2). For each n € N, let G, = {P C X : d(P) < 1/n}.
Then St(z,G,) = Sp(x) for all n € N and = € X. Therefore, | J{G,, : n €
N} is a o-strong network and {St(z,G,) : n € N} is an sn-network at x
for all z € X.

(2) = (3). Assume that (2) holds. For each z € X and n € N, let
g(n,z) = St(x,G,). Then g is an sn-network g-function on X. Now, let
{z,} be a sequence in X and x € X such that = € g(n,x,) for all n € N.
Then z,, € St(z,G,) for all n € N. Thus, z, — z.

(3) = (4). Obvious.
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(4) = (1). Let g be an sn-network g-function on X satisfying (WF).
For each z,y € X with = # y, put é(z,y) = min{n : = ¢ g(n,y),y ¢
g(n,z)}. Now, for each z,y € X, denote

)0 if x =y,
d(x’y)_{l/é(x,y) ifzx#y.

Then d is a d-function on X, and

(a) for each n € N, there exists ng € N such that S,,(z) C g(n,z).
If not, there exists ig € N such that for each n € N, there exists
Ty € Sp(x) — glip,x). Since z, € Sp(z), é(x,x,) > n. Thus,
z € g(n,x,) or &, € g(n,z) for all n € N. This follows that
Zn, — « for some subsequence {x,,} of {z,}. On the other
hand, since each g(ig, x) is a sequential neighborhood at z, {x,, }
is eventually in g(ip,x). This is a contradiction to =, ¢ g(ig, )
for all n € N.

(b) for each n € N, there exists ng € N such that g(ng,z) C Sp(z).
If not, there exists ip € N such that for every n € N, there exists
Zn € g(n,x) — Sy (x). Since {g(n,z) : n € N} is a decreasing sn-
network at x, it implies that x,, — . Thus, {z,} is eventually in
g(io, z). Pick n € N such that z,, € g(ig, z), then §(z,,x) > ig, so
Zn, € Si, (). This is a contradiction to x,, ¢ S;,(z) for all n € N.

Then (a) and (b) imply that {S,(z) : n € N} is an sn-network at z for
all x € X, and X is sn-symmetric. ]

Corollary 2.4. The following are equivalent for a space X :

(1) X is a symmetric space;

(2) X has a weak-development;

(3) there exists a weak base g-function on X satisfying (F);
(4) there exists a weak base g-function on X satisfying (WF).

Theorem 2.5. The following are equivalent for a space X :

(1) X is an sn-developable space;

(2) X is a Cauchy sn-symmetric space;

(3) X has a o-strong network consisting of cs-covers;

(4) X has a o-strong network consisting of sn-covers;

(5) X is a I-sequence-covering and w-image of a metric space;
(6) X is a sequence-covering and w-image of a metric space.

Proof. (1) = (2). Let g be an sn-network g-function satisfying (G).
Then X is Cauchy sn-symmetric. In fact, for each n € N, put G, =
{g(n,x) : x € X}, and put §(z,y) = min{n : = ¢ St(y,G,)} for each
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xz,y € X with x # y. Next, for each z,y € X, we denote

_J0 ifx=uy,
d(x’y)_{l/é(x,y) ifx #y.

Then d is a d-function on X and S,(z) = St(z,G,). Furthermore, we
have

(a) {Sn(z) : n € N} is a network at x for all z € X. If not, there
exist x € U € 7 such that S,(z) ¢ U for all n € N. Thus, for
each n € N, there exists z,, € S,,(x) —U. Since S, (z) = St(x,G,)
for all n € N, it implies that for each n € N, there exists y,, € X
such that z,z, € g(n,y,). By condition (G), x, — z, implying
that {x,} is eventually in U. This is a contradiction.

(b) Let m,n € N; we put ¥ = max{m,n}. Since G;11 refines G,
and S;(z) = St(x,G;) for all i € N, it implies that Si(z) C
S () N Sy ().

(c) Since g(n,z) is a sequential neighborhood at z for all z € X,
and g(n,z) C St(z,Gy,) = Sn(z), it implies that each S,(z) is
sequential neighborhood at x.

Then X is sn-symmetric. Now, let {x;} be a sequence in X,
z; — x and € > 0. Take n € N such that 1/n < e. Since g(n,z)
is a sequential neighborhood at z, {z}J{x; : ¢ > m} C g(n,z)
for some m € N. Hence, z; € St(z;,G,) for all 4,5 > m. This
implies that d(z;,z;) < 1/n < ¢ for all 4,5 > m. Therefore, X is
Cauchy sn-symmetric.

(2) = (3). For each n € N, denote G, = {P C X : d(P) < 1/n}.
Then St(x,G,) = S,(x). Since X is Cauchy sn-symmetric, each G, is a
cs-cover. Therefore, | J{G, : n € N} is a o-strong network consisting of
CS-COVETS.

(3) = (4). Let U{P; : i € N} be a o-strong network consisting of
cs-covers. For each z,y € X with  # y, put §(z,y) = min{n : y ¢
St(x,Pn)}, and denote

_JO if x =y,
d(x’y)_{l/é(m,y) ifex#y.

Then d is a d-function on X, and S, (z) = St(z,P,) for all n € N.
We claim that for each z € X and € > 0, there exists k = k(z,e) € N
such that d(z,y) < 1/k and d(z,z) < 1/k imply d(y, z) < €. Otherwise,
there exist xg € X, €9 > 0, and two sequences {y,} and {z,} in X
such that d(yn, z,) > €0 whenever d(xo,y,) < 1/n and d(xo, z,) < 1/n.
Since |J{P, : n € N} is a o-strong network, {y,} and {z,} converge
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to zo. Now, we choose i € N such that 1/i < g9. Since P; is a cs-
cover for X, {ym,zm} C P for some m € N and P € P;. Thus, y,, €
St(zm, P;), implying that d(ym, zm) = 1/0(Ym, 2m) < 1/i < g9. This is a
contradiction.

Now, for each z € X and n € N, denote k;,, = k(z,1/n) such that
d(y, z) < 1/n whenever d(z,y) < 1/k;, and d(z,z) < 1/k; . Without
loss of generality, we can assume that k; 41 > kg for all n € N. Put
Gn = {Sk,..(x) : x € X} for every n € N. It is obvious that each G, is an
sn-cover and G,, 11 refines G, for all n € N. Furthermore, | J{G,, : n € N} is
a o-strong network. If not, there exist x € U € 7 such that St(z,G,) ¢ U
for all n € N. Thus, for each n € N, there exists x, € St(z,G,) —
U. 1t follows that there exists y, € X such that x € Sk, ., (y,) and
Tn € Sk, . (yn) — U for every n € N. Then d(z,y,) < 1/k,, » and
d(Tn,yn) < 1/ky, n. This implies that d(z,z,) < 1/n. Thus, z,, = x, a
contradiction. Hence, | J{G,, : n € N} is a o-strong network consisting of
sn-covers.

(4) = (1). Let U{Gn : n € N} be a o-strong network consisting
of sn-covers. Then, for each n € N and =z € X, there is i(n,z) € N
such that S, ,)(z) C P for some P € Gy, and i(n,z) < i(n + 1,z).
Now, for each n € N and z € X, we put g(n,7) = Si)(v). Then
g :Nx X — P(X) is an sn-network g-function on X. Next, let {x,} and
{yn} be two sequences in X and x € X satisfying that z,z, € g(n,yn)
for all n € N. Then z,, — z. In fact, let x € U € 7. Since |J{G,, : n € N}
is a o-strong network, there exists ng € N such that St(z,G,) C U for all
n > ng. Since = € g(n,y,) for all n € N, it implies that g(n,y,) C U for
all n > ng. Thus, z,, € U for all n > ng. Hence, x,, — .

(4) = (5). By [18, Lemma 2.2] and [9, Theorem 3.10].
(5) = (6). Obvious.
(6) = (3). By [10, Proposition 16(3b)]. O

Corollary 2.6. The following are equivalent for a space X :
(1) X is a g-developable space;
(2) X is a Cauchy symmetric space;
(3) X has a weak-development consisting of cs-covers;
(4) X has a weak-development consisting of sn-covers;
(5) X is a weak-open and mw-image of a metric space.

Theorem 2.7. The following are equivalent for a space X :

(1) X is an sn-metrizable space;

(2) there exists an sn-network g-function on X satisfying (HLF);
(3) X has a o-locally finite strong network consisting of cfp-covers;
(4) X has a o-locally finite strong network consisting of cs*-covers;
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(5) X is a compact-covering compact and mssc-image of a metric
space;

(6) X is a sequentially-quotient ™ and mssc-image of a metric space;

(7) X is a 1-sequence-covering and mssc-image of a metric space.

Proof. (1) = (2). Let G = J{Gn : n € N} = |U{G, : ¢ € X} be an
sn-network, where each G, is locally finite and each G, is an sn-network
at z. Without loss of generality, we can assume that each G, is a discrete
collection of closed subsets of X (see [5]). For each n € N and z € X, we
put

M) — { €9 it G, NG, #0,
’ X-U{PeG,:x¢P} if G.NG, =0.
For each x € X and n € N, there exists U € 7 such that z € U and U
meets at most only an element of G,. Since

{Unh(n,z):x€ X} C
{Uyu{U—-P:PeG,}U{UNP:PegG,UNnP#0D},

it implies that [{U Nh(n,z) : © € X}| < w for all n € N. Next, we shall
show that every h(n,z) is a sequential neighborhood at z. In fact, let
{z,} be a sequence in X where x,, — z. If G, NG, # 0, then h(n,x) =
P € G,NG,, and {z,} is eventually in h(n,z). If G, NG, = 0, then
h(n,z) =X —|J{P € G, : © ¢ P}. Since G, is discrete, | J{P € G,, : © ¢
P} is closed. This implies that h(n,x) is open. Therefore, each h(n, z) is
a sequential neighborhood at .

Now, we put g(n,z) = ({h(k,z) : 1 < k < n} for each n € N and
x € X. It is easy to see that ¢ : N x X — P(X) is an sn-network
g-function on X, and for each x € X, there exists U € 7 such that
HUNg(n,z):x € X}| <wfor all n € N.

Next, let {z;} and {y;} be two sequences in X such that z; » =z € X,
x; € g(i,y;) for all ¢ € N, and © € V € 7. Then there is n € N such
that P C V for some P € G, NG,, and {z}J{z; : i > m} C P for some
m € N. Since z; € g(i,y;) N P for all i > m, y; € P for all ¢ > m. This
implies that {y,} is eventually in P. Therefore, y, — x.

Then g is an sn-network g-function on X satisfying (HLF).

(2) = (3). Let g be an sn-network g-function on X satisfying (HLF).
For eachn € Nand =z € X, let

h(n,z) = g(n,y) : = € g(n,y)} — U{g(n,y) : = ¢ g(n,y)}-
Then = € h(n,z) C g(n,z). Put

Hp ={h(n,z): 2 € X} and G, = {h(n,z): 2 € X};

we have
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if y € h(n,x), then = € h(n,y). In fact, since y € h(n,x), it
implies that y € g(n, z)if x € g(n, z) and y & g(n, 2) if ¢ ¢ g(n, 2).
This follows that € g(n, 2) if and only if y € g(n, z). Therefore,
x € h(n,y).

G, is locally finite. Let x € X; then there exists U € 7 such that
KU Ng(n,y) : y € X} < w. It implies that [{U Nh(n,y) : y €
X}| < w. Firstly, we prove that for each n € N, H,, is a partition
of X. Indeed,

Case 1. if {z,y} C g(n,2) for all z € X, then
h(n,z) = h(n,y) = (g(n, 2) : {z,y} C g(n, 2)};

Case 2. if there exists z € X such that z € g(n,z) and
y ¢ g(n,z), then h(n,x) C g(n,z) and h(n,y) N g(n,z) = 0.
Thus, h(n,z) N h(n,y) = 0;

Case 3. if there exists z € X such that ¢ g(n,z) and
y € g(n,z), then h(n,xz) N g(n,z) = 0 and h(n,y) C g(n,z2).
Thus, h(n,x) N h(n,y) = 0.

Then h(n,z) = h(n,y) or h(n,z)Nh(n,y) =0 for all z,y € X.
Therefore, H,, is a partition of X.

Next, since each H,, is a partition of X, U meets only finitely

many members h(n,y). Thus, each H,, is locally finite. Therefore,
each G, is locally finite.
{St(z,G,) : n € N} isanetworkat z forallz € X. Let z € U € T;
since X is regular, there exists V € 7 such that € V C U. Then
there exists ng € N such that St(z,H,,) C V. If not, for each
n € N, there exists y, € St(x,H,) — V. Then, for each n € N,
there exists z, such that x,y, € h(n,z,). By (a), z, € h(n,z) C
g(n,z) for all n € N. Since {g(n,z) : n € N} is a decreasing
network at z, z, — x. On the other hand, since y,, € h(n, z,), it
follows from (a) that z, € h(n,y,) C g(n,yn). By property (HLF)
of g, it implies that y, — x. This is a contradiction. Thus, there
exists ng € N such that St(z,H,,) C V. From (b) this implies
that St(x,Gp,) C U.

Finally, for each n € N, put Q,, = A{G; : © < n}. Then, since
each G, is a locally finite closed cover, it follows that | J{Q,, : n €
N} is a o-locally finite network consisting of ¢fp-covers.

(4). Obvious.
(1). Assume that (4) holds. Then X is an sn-first countable

N-space. Therefore, X is sn-metrizable.

3
5

) =
) =

(5). By [18, Lemma 2.2].
(6). Obvious.
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(6) = (1). By [6, Lemma 3.1] and [7, Theorem 5].

(1) = (7). If (1) holds, then X is a sequence-covering and mssc-
image of a metric space by [7, Theorem 5]. Since X is sn-first countable,
it follows from [1, Proposition 2.2] that X is a 1-sequence-covering and
mssc-image of a metric space.

(7) = (1). Assume that (7) holds. Then X is an sn-first countable
space. Furthermore, it follows from [7, Theorem 5] that X is an N-space.
Therefore, X is an sn-metrizable space. ]

Corollary 2.8. The following are equivalent for a space X :

(1) X is a g-metrizable space;

(2) there ezists a weak base g-function on X satisfying (HLF);

(3) X is a weak-development consisting of locally finite cfp-covers;
(4) X is a weak-development consisting of locally finite cs*-covers;
(5) X is a compact-covering quotient compact and mssc-image of a
metric space;

(6) X is a quotient m and mssc-image of a metric space;

(7) X is a weak-open and mssc-image of a metric space.

5

Theorem 2.9. The following are equivalent for a space X :

(1) X is a Cauchy sn-symmetric space with a o-(P)-property sn-
network;

(2) X has a o-(P)-strong network consisting of cs-covers;

(3) X has a o-(P)-strong network consisting of sn-covers;

(4) there exists an sn-network g-function on X satisfying (GP).

Proof. (1) <= (2) <= (3). By [2, Theorem 2.3].

(3) = (4). Let | J{G.. : n € N} be a 0-(P)-strong network consisting of
sn-covers. Then, for each n € N and = € X, there is i(n,z) € N such that
Si(n,2)(x) C Q for some Q € Gy, and i(n,x) < i(n + 1,z). Now, we put
g(n,r) = Sj(n g (x) for every n € Nand 2 € X. Then g: Nx X — P(X)
is an sn-network g-function on X and each {g(n,z) : © € X} has (P)-
property. Now, let {x,} and {y,} be two sequences in X and z € X such
that z,z, € g(n,y,) for all n € N, Then z,, — x. In fact, let x € U € 7.
Since | J{G,, : n € N} is a o-strong network, there exists ng € N such that
St(x,Gy) C U for all n > ng. Since z € g(n,yy) for all n € N| it implies
that g(n,y,) C U for all n > ng. Thus, z, € U for all n > ng, and
z, — x. Therefore, g satisfies (GP).

(4) = (1). Let g be an sn-network g-function satisfying (GP). For
each n € N, put G, = {g(n,z) : . € X}. Then G = |J{G, : n € N} is an
sn-network with o-(P)-property. Now, for each z,y € X with z # y, put
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d(z,y) = min{n : = ¢ St(y,G,)}, and denote

_JO if x =y,
d(x’y)_{l/é(m,y) ifex#y.

Then d is a d-function on X and S, (x) = St(z,G,) for all n € N. We
shall show that {S,(z) : n € N} is a network at « for all € X. If not,
there exist x € U € 7 such that S,(z) ¢ U for all n € N. Thus, for
each n € N, there exists z,, € S,(z) — U. Since S,(z) = St(z,G,) for
all n € N, it implies that for each n € N, there exists y, € X such that
x,Zn € g(n,yn). By condition (G), 2, — x, a contradiction. This follows
that X is sn-symmetric. Now, let {x;} be a sequence in X, x; — x, and
e > 0. Take n € N such that 1/n < e. Since {z} U{z; : i > m} C g(n, z)
for some m € N, we have z; € St(z;,G,) for all 4, j > m. This implies that
d(z;,x;) < 1/n < efor all ¢, j > m. Therefore, X is Cauchy sn-symmetric
with a o-(P)-property sn-network. O

Corollary 2.10. The following are equivalent for a space X :

(1) X is a Cauchy symmetric space with a o-(P)-property weak base;
(2) X has a weak-development consisting of (P)-property cs-covers;
(3) X has a weak-development consisting of (P)-property sn-covers;
(4) there ezists a weak base g-function g on X satisfying (GP).

In case (P) is locally finite, we have the following.

Corollary 2.11. The following are equivalent for a space X :
(1) X is an sn-developable and sn-metrizable space;

(2) X is a strongly sn-developable space;

(3) X has a o-locally finite strong network consisting of sn-covers;

(4) there exists an sn-network g-function g on X satisfying (GLF);

(5) X is a 1-sequence-covering compact and mssc-image of a metric
space;

(6) X is a I-sequence-covering compact and o-image of a metric
space;

(7) X is a sequence-covering ™ and o-image of a metric space.

Proof. (1) <= (2) < (3) <= (4). By Theorem 2.9.

(3) = (5). Let U{Gn : n € N} be a o-locally finite strong network
consisting of sn-covers. Consider the Ponomarev system (f, M, X,G,).
By [18, Lemma 2.2|, f is a sequence-covering and compact map. Thus,
f is a 1-sequence-covering map by [1, Theorem 2.5]. Furthermore, since
each G, is locally finite, f is an mssc-map. Hence, (5) holds.

(5) = (6). By [15, Lemma 17].

(6) = (7). Obvious.
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(7) = (1). Let f: M — X be a sequence-covering 7- and o-map and
M be a metric space. By Theorem 2.5, X is an sn-developable space.
This implies that X is an sn-first countable space by Theorem 2.1. On
the other hand, since f is a sequence-covering and o-map, this implies
that X is an N-space. Therefore, X is an sn-metrizable space. (|

Corollary 2.12. The following are equivalent for a space X :

(1) X is a g-developable and g-metrizable space;

(2) X is a strongly g-developable space;

(3) X has a weak-development consisting of locally finite sn-covers;

(4) there exists a weak base g-function g on X satisfying (GLF);

(5) X is a weak-open compact-covering compact and mssc-image of

a metric space;

(6) X is a weak-open compact-covering compact and o-image of a
metric space;

(7) X is a weak-open w- and o-image of a metric space.

5

Proof. By [1, Corollary 2.8] and Corollary 2.11, we only need to prove
that (3) = (5). Let U{Gx : n € N} be a weak-development consisting of
locally finite sn-covers. We can assume that G,, ;1 refines G,, for all n € N.
By using the proof of [18, Lemma 3.10], it follows that each G, is a cfp-
cover. Consider the Ponomarev system (f, M, X,G,). By [18, Lemma
2.2], f is a sequence-covering compact-covering quotient and compact
map. Thus, f is a weak-open map by [1, Corollary 2.9]. Furthermore,
since each G, is locally finite, f is an mssc-map. a

In case (P) is point-finite, by Theorem 2.9 and [13, Theorem 3.3.8|, we
have the following corollaries.

Corollary 2.13. The following are equivalent for a space X :
(1) X has a uniform sn-network.
(2) X has a point-regular sn-network;
(3) there exists an sn-network g-function g on X satisfying (GPF);
(4) X is a 1-sequence-covering and compact image of a metric space;
(5) X is a sequence-covering and compact image of a metric space.

Corollary 2.14. The following are equivalent for a space X :

(1) X has a uniform weak base;

(2) X has a point-regular weak base;

(3) there exists a weak base g-function g on X satisfying (GPF);
(4) X is a weak-open and compact image of a metric space;

(5) X is a weak-open and compact image of a metric space.

Example 2.15. Let X = NU {p} where p € SN — N. Endow X with
discrete topology. Then X is a metric space. Put Y = NU{p} and endow
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Y with the subspace topology of SN, then Y is not a k-space. Define
f: X =Y by f(z) = x for each z € X. It is easy to see that f is a
1-sequence-covering and compact map. Hence, by Theorem 2.5, it follows
that

(1) not every sn-developable space is g-developable;
(2) not every Cauchy sn-symmetric space is Cauchy symmetric;
(3) Not every sn-symmetric space is symmetric.
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