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EDGE PRESERVING MAPS OF

THE CURVE GRAPHS IN LOW GENUS

ELMAS IRMAK

Abstract. Let R be a compact, connected, orientable surface of
genus g with n boundary components. Let C(R) be the curve graph
of R. We prove that if g = 0, n ≥ 5 or g = 1, n ≥ 3, and
λ : C(R) → C(R) is an edge preserving map, then λ is induced by
a homeomorphism of R, and this homeomorphism is unique up to
isotopy.

1. Introduction

Let R be a compact, connected, orientable surface of genus g with
n boundary components. The mapping class group, ModR, of R is de-
�ned to be the group of isotopy classes of orientation preserving self-
homeomorphisms of R. The extended mapping class group, Mod∗R, of R
is de�ned to be the group of isotopy classes of all self-homeomorphisms
of R. Abstract simplicial complexes on surfaces have been studied to get
information about the algebraic structure of the extended mapping class
groups of the surfaces. One of these complexes is the complex of curves.
The vertex set of the complex of curves is the set of isotopy classes of
nontrivial simple closed curves on R, where nontrivial means the curve
does not bound a disk and it is not isotopic to a boundary component
of R. A set of vertices forms a simplex in the complex of curves if its
elements can be represented by pairwise disjoint simple closed curves on
the surface. Let C(R) be the curve graph, the �rst skeleton of the complex
of curves on R. A map on C(R) is edge preserving if it sends two vertices
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connected by an edge to two vertices connected by an edge. The main
result is the following.

Theorem 1.1. Let R be a compact, connected, orientable surface with
g = 0 and n ≥ 5 or g = 1 and n ≥ 3. If λ : C(R) → C(R) is an edge
preserving map, then there exists a homeomorphism h : R→ R such that
H(α) = λ(α) for every vertex α in C(R), where H = [h] (i.e., λ is induced
by h), and this homeomorphism is unique up to isotopy.

Our main result completes the author's previous work given in [10]
where she proves the statement of this theorem when g ≥ 2 and n ≥ 0.
Results of this nature began with Nikolai V. Ivanov's famous result on au-
tomorphisms of the complex of curves given in [14], where Ivanov proves
that every automorphism of the complex of curves is induced by a home-
omorphism of R if the genus is at least two, and as an application, gives
a classi�cation of isomorphisms between any two �nite index subgroups
of the extended mapping class group of R. These results are extended
for surfaces of genus zero and one by Mustafa Korkmaz in [15] and in-
dependently by Feng Luo in [16]. In [7], [8], and [9], the author proves
that the superinjective simplicial maps of the complex of curves on a com-
pact, connected, orientable surface are induced by homeomorphisms if the
genus is at least two, and, using this result, she presents a classi�cation
of injective homomorphisms from �nite index subgroups of the extended
mapping class group to the extended mapping class group. These results
are extended to lower genus cases by Jason Behrstock and Dan Margalit
in [2] and Robert W. Bell and Margalit in [3]. We remind the reader that
superinjective simplicial maps are simplicial maps that preserve geomet-
ric intersection zero and nonzero properties. After these results, Kenneth
J. Shackleton, in [17], proves that locally injective simplicial maps of the
complex of curves are induced by homeomorphisms.

Javier Aramayona and Christopher J. Leininger [1] prove that there
is an exhaustion of the complex of curves by a sequence of �nite rigid
sets. Elmas Irmak and Luis Paris [12] prove that superinjective simplicial
maps of the two-sided curve complex are induced by homeomorphisms on
compact, connected, nonorientable surfaces when the genus is at least 5.
In [13], they also present a classi�cation of injective homomorphisms from
�nite index subgroups of mapping class group to the whole mapping class
group on these surfaces. In this paper, we use some techniques given by
Irmak and Paris in [12] and some techniques given by Aramayona and
Leininger in [1].

In [6] Jésus Hernández Hernández proves that if S1 and S2 are ori-
entable surfaces of �nite topological type such that S1 has genus at least
3 and the complexity of S1 is an upper bound of the complexity of S2, and
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θ : C(S1) → C(S2) is an edge-preserving map, then S1 is homeomorphic
to S2 and θ is induced by a homeomorphism. In [10] the author gives
a new proof of this result for edge preserving maps of C(R) when g ≥ 2
and n ≥ 0 by �rst proving the result on the nonseparating curve graph.
Since superinjective simplicial maps are edge preserving, this improved
the results of the author given in [7], [8], and [9]. We also note that edge
preserving maps of the curve graphs are used to get information about
the maps of Hatcher�Thurston graphs; see [5] and [10]. Automorphisms
of the Hatcher�Thurston complex are classi�ed by Irmak and Korkmaz
in [11].

In this paper, the author proves the remaining cases on the edge pre-
serving maps of the curve graphs when g = 0 and n ≥ 5 or g = 1 and
n ≥ 3. We note that when g = 0 and n ∈ {1, 2, 3}, the curve graph
is empty. For the other cases, when g = 0 and n = 4 or g = 1 and
n ∈ {0, 1, 2}, the statement is not true. When g = 0 and n = 4 or g = 1
and n ∈ {0, 1}, the curve graph is represented by the Farey graph (see
Figure 1) (by putting edges between vertices that have geometric inter-
section two in g = 0 and n = 4 case and by putting edges between vertices
that have geometric intersection one in the other two cases). It is easy
to see that there are edge preserving maps of the Farey graph that are
not induced by homeomorphisms of the corresponding surfaces in these
cases. When g = 1 and n = 2, the curve graph is isomorphic to the curve
graph of the surfaceM with g = 0 and n = 5; see [16, Lemma 2.1]. There
are automorphisms of the curve graph ofM switching vertices that corre-
spond to nonseparating and separating curves on the surface with g = 1
and n = 2. So the statement is not true for g = 1 and n = 2.
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Figure 1. Farey graph
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2. Edge Preserving Maps of C(R) When g = 1 and n ≥ 3

In this section we will always assume that g = 1 and n ≥ 3 and that
λ : C(R)→ C(R) is an edge preserving map.

We �rst give some de�nitions. Let P be a set of pairwise disjoint non-
trivial simple closed curves on R. The set P is called a pair of pants
decomposition of R if RP (the surface obtained from R by cutting along
P ) is the disjoint union of genus zero surfaces with three boundary com-
ponents, pairs of pants. A pair of pants of a pants decomposition is
the image of one of these connected components under the quotient map
q : RP → R. Let a and b be two distinct elements in a pair of pants
decomposition P on R. Then a is called adjacent to b with respect to P
if and only if there exists a pair of pants in P which has a and b on its
boundary.

Lemma 2.1. If A is a set of vertices in C(R) where every pair has geo-
metric intersection zero, then λ restricted to A is injective.

Proof. Let A be a set of vertices in C(R) where every pair has geometric
intersection zero. Let α and β be distinct elements inA. Since i(α, β) = 0,
there is an edge between α and β. Since λ is edge preserving, there is an
edge between λ(α) and λ(β). So λ(α) 6= λ(β). Hence, λ restricted to A
is injective. �

Lemma 2.2. Let P be a pants decomposition on R. A set of pairwise
disjoint representatives of λ([P ]) is a pants decomposition on R.

Proof. The proof follows from Lemma 2.1. �

Lemma 2.3. Let α1 and α2 be two vertices of C(R). If i(α1, α2) = 1,
then i(λ(α1), λ(α2)) 6= 0.

Proof. Let a and b be minimally intersecting representatives of α1 and α2,
respectively. We complete a and b to a curve con�guration {a, b, c, d, e} as
shown in Figure 2. Then we complete {a, c, e} to a pants decomposition
P on R. Let P ′ be a set of pairwise disjoint representatives of λ([P ]).
The set P ′ is a pants decomposition on R. We see that i([b], [x]) = 0 for
all x ∈ P \{a} and there is an edge between [b] and [x] for all x ∈ P \{a}.
Since λ is edge preserving, we have i(λ([b]), λ([x])) = 0 for all x ∈ P \ {a}
and there is an edge between λ([b]) and λ([x]) for all x ∈ P \ {a}. This
implies that either i(λ([a]), λ([b])) 6= 0 or λ([a]) = λ([b]). With a similar
argument, we can see that either i(λ([d]), λ([b])) 6= 0 or λ([d]) = λ([b]). If
λ([a]) = λ([b]), then we could not have i(λ([d]), λ([b])) 6= 0, and λ([d]) =
λ([b]) since λ is edge preserving. Hence, i(λ([a]), λ([b])) 6= 0. �
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Figure 2. Intersection one

Lemma 2.4. Let {y, c1, c2, · · · cn−1} be the curves shown in Figure 3.
Then we have i(λ([y]), λ([ci])) 6= 0 for all i = 1, 2, · · ·n− 1.

Proof. To see that i(λ([y]), λ([c1])) 6= 0, we complete y to a pants decom-
position P using all the unlabeled curves given in Figure 3(i). Let P ′ be
a set of pairwise disjoint representatives of λ([P ]). The set P ′ is a pants
decomposition on R. We see that i([c1], [x]) = 0 for all x ∈ P \ {y} and
there is an edge between [c1] and [x] for all x ∈ P \ {y}. Since λ is edge
preserving, we have i(λ([c1]), λ([x])) = 0 for all x ∈ P \{y} and there is an
edge between λ([c1]) and λ([x]) for all x ∈ P \{y}. This implies that either
i(λ([c1]), λ([y])) 6= 0 or λ([c1]) = λ([y]). Let a be the curve shown in Fig-
ure 3(i). Since i([a]), [y]) = 1, by Lemma 2.3 we know i(λ([a]), λ([y])) 6= 0.
But since i([a]), [c1]) = 0, we have i(λ([a]), λ([c1])) = 0. So λ([c1]) cannot
be equal to λ([y]). Hence, i(λ([y]), λ([c1])) 6= 0. With similar arguments,
we see that i(λ([y]), λ([ci])) 6= 0 for all i = 2, 3, · · · , n − 1 (see Figure
3(ii)�(iv).) �

Lemma 2.5. Let P = {a, c1, c2, c3, · · · , cn−1} where the curves are as
shown in Figure 3. Let P ′ be a pair of pants decomposition of R such that
λ([P ]) = [P ′]. If x, y ∈ P and x is adjacent to y with respect to P , then
λ([x]) and λ([y]) have representatives in P ′ which are adjacent to each
other with respect to P ′.

Proof. We see that a is adjacent to c1 with respect to P . To see that
λ([a]) and λ([c1]) have representatives in P ′ which are adjacent to each
other with respect to P ′, it is enough to �nd a curve p1 (shown in Figure
3(v)) which intersects only a and c1 and not any other curve in P and
to control that (i) i(λ([p1]), λ([a])) 6= 0; (ii) i(λ([p1]), λ([c1])) 6= 0; and
(iii) i(λ([p1]), λ([x])) = 0 for every x ∈ P \ {a, c1}.

(i) Since a and p1 have geometric intersection one, by using Lemma
2.3, we see that i(λ([p1]), λ([a])) 6= 0.

(ii) To see that i(λ([p1]), λ([c1])) 6= 0, we consider the following: Let
Q = (P \ {a})∪{b} where the curve b is as shown in Figure 3(v).
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Figure 3. Adjacency

Then Q is a pants decomposition on R and i(λ([p1]), λ([x])) = 0
for every x ∈ Q\{c1}. So either i(λ([p1]), λ([c1])) 6= 0 or λ([p1]) =
λ([c1]). Since i([a]), [p1]) = 1, by Lemma 2.3, i(λ([a]), λ([p1])) 6=
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0. But since i([a]), [c1]) = 0, we have i(λ([a]), λ([c1])) = 0. So
λ([p1]) cannot be equal to λ([c1]). Hence, i(λ([p1]), λ([c1])) 6= 0.

(iii) Since λ is edge preserving, i(λ([p1]), λ([x])) = 0 for every x ∈
P \ {a, c1}.

This gives us that λ([a]) and λ([c1]) have representatives in P ′ which
are adjacent to each other with respect to P ′.

To see that λ([c1]) and λ([c2]) have representatives in P
′ which are adja-

cent to each other with respect to P ′, it is enough to �nd a curve p2 shown
in Figure 3(vi) which intersects only c1 and c2 and not any other curve in
P and to control that (i) i(λ([p2]), λ([c1])) 6= 0; (ii) i(λ([p2]), λ([c2])) 6= 0;
and (iii) i(λ([p2]), λ([x])) = 0 for every x ∈ P \ {c1, c2}.

(i) To see that i(λ([p2]), λ([c1])) 6= 0, we consider the following: Let
Q = (P \ {c2}) ∪ {x1} where the curve x1 is as shown in Figure
3(vii). ThenQ is a pants decomposition on R and i(λ([p2]), λ([x]))
= 0 for every x ∈ Q \ {c1}. So either i(λ([p2]), λ([c1])) 6= 0 or
λ([p2]) = λ([c1]). Since i([b]), [p2]) = 1, i(λ([b]), λ([p2])) 6= 0 by
Lemma 2.3. But since i([b]), [c1]) = 0, we have i(λ([b]), λ([c1])) =
0. So λ([p2]) cannot be equal to λ([c1]). Hence, i(λ([p2]), λ([c1])) 6=
0.

(ii) To see that i(λ([p2]), λ([c2])) 6= 0, we consider T = (P \{c1})∪{z}
where the curve z is as shown in Figure 3(viii). Then T is a
pants decomposition on R and i(λ([p2]), λ([x])) = 0 for every
x ∈ T \ {c2}. So either i(λ([p2]), λ([c2])) 6= 0 or λ([p2]) = λ([c2]).
Since i([b]), [p2]) = 1, by Lemma 2.3 i(λ([b]), λ([p2])) 6= 0. But
since i([b]), [c2]) = 0, we have i(λ([b]), λ([c2])) = 0. So λ([p2])
cannot be equal to λ([c2]). Hence, i(λ([p2]), λ([c2])) 6= 0.

(iii) Since λ is edge preserving, i(λ([p2]), λ([x])) = 0 for every x ∈
P \ {c1, c2}.

This gives us that λ([c1]) and λ([c2]) have representatives in P
′ which

are adjacent to each other with respect to P ′.

To see that λ([c2]) and λ([c3]) have representatives in P
′ which are adja-

cent to each other with respect to P ′, it is enough to �nd a curve p3 shown
in Figure 4(i) which intersects only c2 and c3 and not any other curve in
P and to control that (i) i(λ([p3]), λ([c2])) 6= 0; (ii) i(λ([p3]), λ([c3])) 6= 0;
and (iii) i(λ([p3]), λ([x])) = 0 for every x ∈ P \ {c2, c3}.

(i) To see that i(λ([p3]), λ([c2])) 6= 0, we consider U = (P \ {c3}) ∪
{x2} where the curve x2 is as shown in Figure 4(ii). We see that U
is a pants decomposition on R and i(λ([p3]), λ([x])) = 0 for every
x ∈ U \ {c2}. So either i(λ([p3]), λ([c2])) 6= 0 or λ([p3]) = λ([c2]).
By Lemma 2.4, we have i(λ([y]), λ([c2])) 6= 0. Since i(([y]), [p3]) =
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Figure 4. Adjacency, Nonadjacency

0, we have i(λ([y]), λ([p3])) = 0. So λ([p3]) 6= λ([c2]). Hence,
i(λ([p3]), λ([c2])) 6= 0.

(ii) To see that i(λ([p3]), λ([c2])) 6= 0, we consider V = (P \ {c2}) ∪
{x1} where the curve x1 is as shown in Figure 4(iii). We see that V
is a pants decomposition on R and i(λ([p3]), λ([x])) = 0 for every
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x ∈ V \ {c3}. So either i(λ([p3]), λ([c3])) 6= 0 or λ([p3]) = λ([c3]).
By Lemma 2.4, we have i(λ([y]), λ([c3])) 6= 0. Since i(([y]), [p3]) =
0, we have i(λ([y]), λ([p3])) = 0. So λ([p3]) 6= λ([c3]). Hence,
i(λ([p3]), λ([c3])) 6= 0.

(iii) Since λ is edge preserving, i(λ([p3]), λ([x])) = 0 for every x ∈
P \ {c2, c3}.

This gives us that λ([c2]) and λ([c3]) have representatives in P
′ which

are adjacent to each other with respect to P ′.

The proof of the statement that λ([ci]) and λ([ci+1]) have represen-
tatives in P ′ which are adjacent to each other with respect to P ′ for
i = 2, 3, · · · , n − 1 is similar to the proof of this last case (see Figure
4(iv)�(vi)). �

Lemma 2.6. Let P = {a, c1, c2, c3, · · · , cn−1} where the curves are as
shown in Figure 4(vii). Let P ′ be a pair of pants decomposition of R such
that λ([P ]) = [P ′]. If x, y ∈ P and x is not adjacent to y with respect to P ,
then λ([x]) and λ([y]) have representatives in P ′ which are not adjacent
to each other with respect to P ′.

Proof. Consider the curves z and zi given in Figure 4(vii). We will �rst
show that (i) i(λ([z]), λ([c1])) 6= 0 and (ii) i(λ([zi]), λ([ci])) 6= 0 for all
i = 2, 3, 4, · · · , n− 1.

(i) To see that i(λ([z]), λ([c1])) 6= 0, we observe that i(λ([z]), λ([x])) =
0 for every x ∈ P \{c1}. So either i(λ([z]), λ([c1])) 6= 0 or λ([z]) =
λ([c1]). Since i([b], [z]) = 1, we have i(λ([b]), λ([z)) 6= 0 by Lemma
2.3. But since i([b]), [c1]) = 0, we have i(λ([b]), λ([c1])) = 0. So
λ([z]) cannot be equal to λ([c1]). Hence, i(λ([z]), λ([c1])) 6= 0.

(ii) To see that i(λ([z2]), λ([c2])) 6= 0, we observe that i(λ([z2]), λ([x]))
= 0 for every x ∈ P \ {c2}. So either i(λ([z2]), λ([c2])) 6= 0
or λ([z2]) = λ([c2]). We have i(λ([y]), λ([c2])) 6= 0 by Lemma
2.4. But since i([y], [z2]) = 0, we have i(λ([y]), λ([z2])) = 0. So
λ([z2]) cannot be equal to λ([c2]). Hence, i(λ([z2]), λ([c2])) 6= 0.
Similarly, we see that i(λ([zi]), λ([ci])) 6= 0 for all i = 3, 4, · · · , n−
1.

To see that if x, y ∈ P and x is not adjacent to y with respect to P ,
then λ([x]) and λ([y]) have representatives in P ′ which are not adjacent
to each other with respect to P ′, it is enough to �nd two disjoint curves w
and t such that w intersects only x nontrivially and not the other curves
in P , that t intersects only y nontrivially and not the other curves in P ,
and that i(λ([w]), λ([x])) 6= 0; i(λ([t]), λ([y])) 6= 0; i(λ([w]), λ([q])) = 0 for
all q ∈ P \{x}; i(λ([t]), λ([q])) = 0 for all q ∈ P \{y}; i(λ([t]), λ([w])) = 0.
For the pair a and ci, when i = 2, 3, · · · , n− 1, the curves b and zi would
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satisfy this where the curve b is as shown in Figure 3(v). For the pair c1
and ci, when i = 3, 4, · · · , n − 1, the curves z and zi would satisfy this.
For the pair c2 and ci, when i = 4, 5, · · · , n − 1, the curves z2 and zi
would satisfy this. Similarly, we see that nonadjacency is preserved for
every nonadjacent pair in P . �

Lemma 2.7. If α1 and α2 are two vertices of C(R) with i(α1, α2) = 1,
then i(λ(α1), λ(α2)) = 1.

Proof. Let a and b be representatives of α1 and α2, respectively. We
will complete a and b to a curve con�guration {a, b, c, d, e, f} as shown
in Figure 5(i). We can let c1 = c and c2 = e and complete {a, c, e} to a
pants decomposition P as in Lemma 2.5, and using that adjacency and
nonadjacency are preserved with respect to P ′ by Lemma 2.5 and Lemma
2.6, we can see that λ([c]) has a representative c′ which is a separating
curve that separates the surface into two pieces and one of these is a
torus T with one boundary component and λ([a]) has a nonseparating
representative, say a′, in T . Let b′, d′, e′, and f ′ be minimally intersecting
representatives of λ([b]), λ([d]), λ([e]), and λ([f ]), respectively, such that
all the curves a′, b′, c′, d′, e′, and f ′ minimally intersect each other. By
Lemma 2.3, we know that i([a′], [b′]) 6= 0 and i([b′], [d′]) 6= 0.
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We will prove that i([f ′], [a′]) 6= 0, i([f ′], [c′]) 6= 0, and i([d′], [c′]) 6= 0.
To see i([f ′], [a′]) 6= 0, let U = (P \ {c1}) ∪ {d}. Then U is a pants
decomposition on R and i(λ([f ]), λ([x])) = 0 for every x ∈ U \ {a}; see
Figure 5(i). So either i(λ([f ]), λ([a])) 6= 0 or λ([f ]) = λ([a]). By Lemma
2.3, i(λ([a]), λ([b])) 6= 0. Since i(([f ]), [b]) = 0, we have i(λ([f ]), λ([b])) =
0. So λ([f ]) cannot be equal to λ([a]). Hence, i(λ([f ]), λ([a])) 6= 0.

To see that i([f ′], [c′]) 6= 0, let V = (P \ {a}) ∪ {b}. Then V is a
pants decomposition on R and i(λ([f ]), λ([x])) = 0 for every x ∈ V \ {c};
see Figure 5(iii). So either i(λ([f ]), λ([c])) 6= 0 or λ([f ]) = λ([c]). By the
above paragraph, we know that i(λ([f ]), λ([a])) 6= 0. Since i(([a]), [c]) = 0,
we have i(λ([a]), λ([c])) = 0. So λ([f ]) cannot be equal to λ([c]). Hence,
i(λ([f ]), λ([c])) 6= 0.

To see that i([d′], [c′]) 6= 0, we observe that i(λ([d]), λ([x])) = 0 for
every x ∈ P \ {c}; see Figure 5(iv). So either i(λ([d]), λ([c])) 6= 0 or
λ([d]) = λ([c]). By Lemma 2.3, we know that i(λ([b]), λ([d])) 6= 0. Since
i(([b]), [c]) = 0, we have i(λ([b]), λ([c])) = 0. So λ([d]) cannot be equal to
λ([c]). Hence, i(λ([d]), λ([c])) 6= 0.

The above intersection information implies that there is an arc of d′,
say γ1, in T that starts and ends at c′ (the boundary of T ) such that γ1
is disjoint from a′. Also, there is an arc of f ′, say γ2, in T that is disjoint
from γ1 and starts and ends at c′. Then, since b′ is disjoint from γ2 ∪ c′
and b′ intersects a′ by Lemma 2.3, we see that i(a′, b′) = 1. �

If f : R→ R is a homeomorphism, then we will use the same notation
for f and [f ]. Let C = {a1, a2, · · · , an, b,m1,m2, · · · ,mn, r1, r2, · · · , rn,
v2, v3, · · · , vn} where the curves are as shown in Figure 6.

Lemma 2.8. There exists a homeomorphism h : R → R such that
h([x]) = λ([x]) for all x ∈ C.

Proof. We will consider all the curves in C as shown in Figure 6. Let
a′i ∈ λ([ai]), b′ ∈ λ([b]), m′i ∈ λ([mi]), r

′
i ∈ λ([ri]), and v′j ∈ λ([vj ]) where

i = 1, 2, · · · , n, j = 2, 3, · · · , n are minimally intersecting representatives.
By using Lemma 2.7 and that λ is edge preserving, we see that a

regular neighborhood of a′1 ∪ a′2 ∪ · · · ∪ a′n ∪ b is a torus with n boundary
components as shown in Figure 7. So there exists a homeomorphism h
such that h([x]) = λ([x]) for all x ∈ {a1, a2, · · · , an, b}. This implies that
if two nonseparating curves x and y and a boundary component of R
bound a pair of pants, then λ([x]) and λ([y]) have representatives x′ and
y′ such that x′, y′, and a boundary component of R bound a pair of pants
on R.

We will now show that h([mi]) = λ([mi]) for all i = 1, 2, · · · , n. The
curve m1 is the unique nontrivial curve up to isotopy that is disjoint from
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all the curves in {a2, a3, · · · , an, b}. Since we know that h([x]) = λ([x]) for
all these curves and λ is edge preserving, we have h([m1]) = λ([m1]). The
curve m2 is the unique nontrivial curve up to isotopy that is disjoint from
all the curves in {a3, a4, · · · , an, a1, b}. Since we know that h([x]) = λ([x])
for all these curves and λ is edge preserving, we have h([m2]) = λ([m2]).
Similarly, we have h([mi]) = λ([mi]) for all i = 3, 4, · · · , n.

The curve v2 = m2, so h([v2]) = λ([v2]). The curve v3 is the unique
nontrivial curve up to isotopy that is disjoint from all the curves in
{a4, a5, · · · , an, a1, b,m2,m3}. Since we know that h([x]) = λ([x]) for
all these curves and λ is edge preserving, we have h([v3]) = λ([v3]). The
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curve v4 is the unique nontrivial curve up to isotopy that is disjoint from
all the curves in {a5, a6, · · · , an, a1, b,m2,m3,m4}. Since we know that
h([x]) = λ([x]) for all these curves and λ is edge preserving, we have
h([v4]) = λ([v4]). Similarly, we have h([vi]) = λ([vi]) for all i = 5, 6, · · · , n.

Consider the curve w1 as shown in the Figure 6(ii). There exists a
homeomorphism φ : R→ R of order two such that the map φ∗ induced by
φ on C(R) sends the isotopy class of each curve in {a1, a2, · · · , an,m1,m2,
· · · ,mn} to itself and switches [r1] and [w1]. We can see that λ([r1]) 6=
λ([w1]) as follows: Consider the curve y we had in Lemma 2.4. We will
�rst prove that i(λ([w1]), λ([y])) 6= 0. We complete y to a pants decompo-
sition P on R such that i([w1], [x]) = 0 for every x ∈ P \ {y}; see Figure
8(i). Then we will have i(λ([w1]), λ([x])) = 0 for every x ∈ P \ {y}.
So either i(λ([w1]), λ([y])) 6= 0 or λ([w1]) = λ([y]). By Lemma 2.4, we
know that i(λ([y]), λ([cn−1])) 6= 0; see Figure 8(ii). We also see that
i(λ([w1]), λ([cn−1])) = 0. So λ([w1]) 6= λ([y]). Hence, i(λ([w1]), λ([y])) 6=
0. Since i(λ([y]), λ([r1])) = 0 and i(λ([w1]), λ([y])) 6= 0, we see that
λ([r1]) 6= λ([w1]).
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Figure 8. Curves

There are only two nontrivial curves, namely r1 and w1, up to isotopy
that are disjoint from each of m3,m4, · · · ,mn, bound a pair of pants with
b and a boundary component of R, and intersect each of a1, a2, · · · , an
once. Since we know that h([x]) = λ([x]) for all these curves, λ preserves
these properties by Lemma 2.7, and λ([r1]) 6= λ([w1]); by replacing λ
with λ ◦ φ∗ if necessary, we can assume that we have h([r1]) = λ([r1])
and h([w1]) = λ([w1]). To get the proof of the lemma, it is enough to
prove the result for this λ. The curve r2 is the unique nontrivial curve up
to isotopy that is disjoint from each of m4,m5, · · · ,mn,m1, w1, bounds a
pair of pants with b and a boundary component ofR, and intersects each of
a1, a2, · · · , an once. Since we know that h([x]) = λ([x]) for all these curves
and λ preserves these properties, we see that h([r2]) = λ([r2]). Similarly,
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we get h([ri]) = λ([ri]) for all i = 3, 4, · · · , n. Hence, h([x]) = λ([x]) for
all x ∈ C. �

Consider the curves given in Figure 6(i). Let tx be the Dehn twist about
x. Let σi be the half twist along mi. The mapping class groupModR can
be generated by {tx : x ∈ {a1, a2, · · · , an, b}} ∪ {σ2, σ3, · · · , σn}; see [4,
Corollary 4.15]. Let G = {tx : x ∈ {a1, a2, · · · , an, b}} ∪ {σ2, σ3, · · · , σn}.
Let h : R → R be a homeomorphism which satis�es the statement of
Lemma 2.8. We know h([x]) = λ([x]) for all x ∈ C. We will follow the
techniques given by Irmak and Paris [13] to obtain the homeomorphism
we want. We will say that a subset A ⊂ C(R) has trivial stabilizer if we
have the following: h ∈ Mod∗R and h([x]) = [x] for every vertex x ∈ A
implies that h is the identity.

Lemma 2.9. For all f ∈ G, there exists a set Lf ⊂ C(R) such that
λ([x]) = h([x]) for all x ∈ Lf ∪ f(Lf ). The set Lf can be chosen to have
trivial stabilizer.

Proof. We have h([x]) = λ([x]) for all x ∈ C by Lemma 2.8. Let f ∈
G. For f = tb, let Lf = {a1, a2, · · · , an, b, r1}. The set Lf has trivial
stabilizer. We know λ([x]) = h([x]) for all x ∈ Lf . We need to check the
equation for tb(ai); the other curves in Lf are �xed by tb. We will �rst
check the equation for tb(an). Consider the curves given in Figure 9. The
curve s1 is the unique nontrivial curve up to isotopy that is disjoint from
all the curves in {a1, rn, vn−1}. Since we know that h([x]) = λ([x]) for all
these curves and λ is edge preserving, we have h([s1]) = λ([s1]). The curve
tb(an) is the unique nontrivial curve up to isotopy that is disjoint from all
the curves in {m1, s1, vn−1}. Since we know that h([x]) = λ([x]) for all
these curves and λ is edge preserving, we have h([tb(an)]) = λ([tb(an)]).

The curve tb(a1) is the unique nontrivial curve up to isotopy that is
disjoint from tb(an) and vn and that intersects each of a1 and b nontriv-
ially once. Since we know that h([x]) = λ([x]) for all these curves and that
λ is edge preserving and preserves intersection one, we have h([tb(a1)]) =
λ([tb(a1)]). The curve tb(a2) is the unique nontrivial curve up to isotopy
that is disjoint from all the curves in {tb(an),m1,m3,m4, · · · ,mn} and
that intersects each of a2 and b nontrivially once. Since we know that
h([x]) = λ([x]) for all these curves and λ is edge preserving and pre-
serves intersection one, we have h([tb(a2)]) = λ([tb(a2)]). Similarly, we
get h([tb(ai)]) = λ([tb(ai)]) for all i = 3, 4, · · · , n − 1. This proves the
statement of the lemma for f = tb.

For f = ta2 , let Lf = {a1, a2, · · · , an, b, r2}. The set Lf has trivial
stabilizer. We know λ([x]) = h([x]) for all x ∈ Lf . We just need to check
the equation for ta2

(b) and ta2
(r2) since the other curves in Lf are �xed

by ta2
. Consider the curves given in Figure 9(v). The curve s2 is the
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unique nontrivial curve up to isotopy that is disjoint from all the curves
in {a1, r1,m3,m4, · · · ,mn}. Since we know that h([x]) = λ([x]) for all
these curves and λ is edge preserving, we have h([s2]) = λ([s2]). The
curve ta2

(b) is the unique nontrivial curve up to isotopy that is disjoint
from all the curves in {m1, s2,m3,m4, · · · ,mn}. Since we know that
h([x]) = λ([x]) for all these curves and λ is edge preserving, we have
h([ta2(b)]) = λ([ta2(b)]). The curve ta1(b) is the unique nontrivial curve
up to isotopy that is disjoint from ta2

(b) and vn. Since we know that
h([x]) = λ([x]) for all these curves and λ is edge preserving, we have
h([ta1

(b)]) = λ([ta1
(b)]). Similarly, we get h([tai

(b)]) = λ([tai
(b)]) for

all i = 3, 4, · · · , n. The curve ta2
(r2) is the unique nontrivial curve up

to isotopy that is disjoint from each of m1,m2,m4,m5, · · · ,mn, ta1(b).
Since we know that h([x]) = λ([x]) for all these curves and λ is edge
preserving, we have h([ta2

(r2)]) = λ([ta2
(r2)]). This proves the statement

of the lemma for f = ta2
.

Similarly, for f = taj
when j ∈ {1, 3, 4, · · · , n}, let Lf = {a1, a2, · · · ,

an, b, rj}. The set Lf has trivial stabilizer. We know λ([x]) = h([x]) for all
x ∈ Lf . We just need to check the equation for taj (b) and taj (rj) since the
other curves in Lf are �xed by taj

. In the above paragraph we already
obtained that h([taj

(b)]) = λ([taj
(b)]). When j < n, the curve taj

(rj)
is the unique nontrivial curve up to isotopy that is disjoint from each of
m1,m2, · · · ,mj ,mj+2,mj+3, · · · ,mn, ta1(b). Since we know that h([x]) =
λ([x]) for all these curves and λ is edge preserving, we have h([taj (rj)]) =
λ([taj

(rj)]) when j < n. The curve tan
(rn) is the unique nontrivial curve

up to isotopy that is disjoint from each of m2,m3, · · · ,mn, ta1
(b). Since

we know that h([x]) = λ([x]) for all these curves and λ is edge preserving,
we have h([tan(rn)]) = λ([tan(rn)]). Hence, we obtain the statement of
the lemma for f = taj for all j ∈ {1, 2, · · · , n}.

For f = σi, where i ∈ {2, 3, · · · , n}, we let Lf = {a1, a2, · · · , an, b, ro}
where ro ∈ {r1, r2, · · · , rn} such that ro is disjoint frommi. We know that
λ([x]) = h([x]) for all x ∈ Lf . We just need to check that h([σi(ai)]) =
λ([σi(ai)]) for each i since the other curves in Lf are �xed by σi. For i = 2,
we use the curve u1 shown in Figure 10(i). The curve u1 is the unique
nontrivial curve up to isotopy that is disjoint from a3, a4, · · · , an, b, r1.
Since we know that h([x]) = λ([x]) for all these curves and λ is edge
preserving, we have h([u1]) = λ([u1]). The curve σ2(a2), which is shown
as j1 in Figure 10(ii), is the unique curve up to isotopy disjoint from
a1, a3, a4, · · · , an, u1 which intersects b once and is nonisotopic to a3.
Since we know that h([x]) = λ([x]) for all these curves and λ preserves
these properties, we see that h([σ2(a2)]) = λ([σ2(a2)]). For i = 3, we
use the curve u2 shown in Figure 10(iii). The curve u2 is the unique
nontrivial curve up to isotopy that is disjoint from a4, a5, · · · , an, b, r1, r2.
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Since we know that h([x]) = λ([x]) for all these curves and λ is edge
preserving, we have h([u2]) = λ([u2]). The curve σ3(a3), which is shown
as j2 in Figure 10(iv), is the unique curve up to isotopy disjoint from
a1, a2, a4, a5, · · · , an, u2 which intersects b once and is nonisotopic to a4.
Since we know that h([x]) = λ([x]) for all these curves and λ preserves
these properties, we see that h([σ3(a3)]) = λ([σ3(a3)]). Similarly, we get
h([σi(ai)]) = λ([σi(ai)]) for each i = 4, 5, · · · , n. �
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Theorem 2.10. There exists a homeomorphism h : R → R such that
H(α) = λ(α) for every vertex α in C(R) where H = [h], and this homeo-
morphism is unique up to isotopy.

Proof. Let f ∈ G. There exists Lf ⊂ C(R) which satis�es the statement
of Lemma 2.9. Consider C given in Lemma 2.8. Let X = C ∪

(⋃
f∈G(Lf ∪

f(Lf )
)
). For each vertex x in the curve complex, there exist r ∈ ModR

and a vertex y in the set X such that r(y) = x. By following the con-
struction given in [12], we let X1 = X and Xk = Xk−1∪ (

⋃
f∈G(f(Xk−1)∪

f−1(Xk−1))) when k ≥ 2. We observe that C(R) =
⋃∞

k=1 Xk. We will
prove that h([x]) = λ([x]) for all x ∈ Xk for each k ≥ 1. We will give
the proof by induction on k. By using Lemma 2.8 and Lemma 2.9, we
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see that h([x]) = λ([x]) for each x ∈ X1. Assume that h([x]) = λ([x])
for all x ∈ Xk−1 for some k ≥ 2. Let f ∈ G. There exists a homeo-
morphism hf of R such that hf ([x]) = λ([x]) for all x ∈ f(Xk−1). We
have f(Lf ) ⊂ Xk−1 ∩ f(Xk−1). This implies that we have hf = h since
f(Lf ) has trivial stabilizer. Similarly, there exists a homeomorphism
h′f of R such that h′f ([x]) = λ([x]) for all x ∈ f−1(Xk−1). We have

Lf ⊂ Xk−1 ∩ f−1(Xk−1). This implies that we have h′f = h since Lf has

trivial stabilizer. So h([x]) = λ([x]) for each x ∈ Xk. Hence, by induction,
h([x]) = λ([x]) for each x ∈ Xk for all k ≥ 1. Since C(R) =

⋃∞
k=1 Xk, we

have h([x]) = λ([x]) for every vertex [x] ∈ C(R). It is easy to see that this
homeomorphism is unique up to isotopy. �

3. Edge Preserving Maps of C(R) When g = 0 and n ≥ 5

In this section, we will always assume that g = 0, n ≥ 5, and λ :
C(R) → C(R) is an edge preserving map. As in the second section, we
have the following two lemmas.

Lemma 3.1. The map λ is injective on every set of vertices in C(R) if
each pair in the set has geometric intersection zero.

Lemma 3.2. Let P be a pants decomposition on R. A set of pairwise
disjoint representatives of λ([P ]) is a pants decomposition on R.

Let C1 = {a1, a2, a3, · · · , an−3, b1, b2, b3, · · · , bn−3, c} where the curves
are as shown in Figure 11(i). Let P = {a1, a2, a3, · · · , an−3}. Let P ′ be a
pair of pants decomposition of R such that λ([P ]) = [P ′]. For all i, let a′i
be the representative of λ([ai]) in P

′ and let b′i be the representative of
λ([bi]) such that every pair in P ′ ∪ {b′1, b′2, b′3, · · · , b′n−3} intersects mini-
mally. Let c′ be the representative of λ([c]) that intersects the elements
of P ′ ∪ {b′1, b′2, b′3, · · · , b′n−3} minimally.

Lemma 3.3. We have i([a′i], [b
′
i]) 6= 0 for all i = 1, 2, · · · , n− 3.

Proof. We will �rst show that i([a′1], [b
′
1]) 6= 0. We see that i([b1], [x]) = 0

for all x ∈ P \ {a1} and there is an edge between [b1] and [x] for all
x ∈ P \ {a1}. Since λ is edge preserving, we have i(λ([b1]), λ([x])) = 0 for
all x ∈ P \{a1} and there is an edge between λ([b1]) and λ([x]) for all x ∈
P\{ai}. This implies that either i(λ([b1]), λ([a1])) 6= 0 or λ([b1]) = λ([a1]).
With a similar argument, we can see that i(λ([c]), λ([a1])) 6= 0 or λ([c]) =
λ([a1]). If λ([b1]) = λ([a1]), then we could not have i(λ([c]), λ([a1])) 6= 0
or λ([c]) = λ([a1]) since λ([c]) and λ([b1]) are connected by an edge. So
i(λ([b1]), λ([a1])) 6= 0.

To see that i(λ([b2]), λ([a2])) 6= 0, we observe that i([b2], [x]) = 0 for all
x ∈ P \{a2} and there is an edge between [b2] and [x] for all x ∈ P \{a2}.
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Since λ is edge preserving, we have i(λ([b2]), λ([x])) = 0 for all x ∈ P \{a2}
and there is an edge between λ([b2]) and λ([x]) for all x ∈ P \ {a2}.
This implies that either i(λ([b2]), λ([a2])) 6= 0 or λ([b2]) = λ([a2]). Since
i(λ([b1]), λ([a1])) 6= 0 and there is a homeomorphism sending the pair
(a1, b1) to (b1, b2), we can see that i(λ([b1]), λ([b2])) 6= 0. If λ([b2]) =
λ([a2]), then we could not have i(λ([b1]), λ([b2])) 6= 0 since λ([b1]) and
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λ([a2]) are connected by an edge. So i(λ([b2]), λ([a2])) 6= 0. With similar
arguments, we get i(λ([bi]), λ([ai])) 6= 0 for all i = 1, 2, · · · , n− 3. �

Lemma 3.4. The curves a′i and a′i+1 are adjacent to each other with
respect to P ′ for all i = 1, 2, · · · , n− 4.

Proof. We will �rst prove that a′1 and a′2 are adjacent to each other with
respect to P ′. Let z1 be the curve shown in Figure 11(ii). The set Q =
(P \{a1})∪{b1} is a pants decomposition on R. We see that i([z1], [x]) = 0
for all x ∈ Q \ {a2} and there is an edge between [z1] and [x] for all
x ∈ Q \ {a2}. Since λ is edge preserving, we have i(λ([z1]), λ([x])) = 0
for all x ∈ Q \ {a2} and there is an edge between λ([z1]) and λ([x])
for all x ∈ Q \ {a2}. This implies that either i(λ([z1]), λ([a2])) 6= 0 or
λ([z1]) = λ([a2]). Since i(λ([z1]), λ([b2])) = 0 and i(λ([a2]), λ([b2])) 6= 0
by Lemma 3.3, we cannot have λ([z1]) = λ([a2]). So i(λ([z1]), λ([a2])) 6= 0.
Since i(λ([a2]), λ([b2])) 6= 0 by Lemma 3.3 and there is a homeomorphism
sending the pair (a2, b2) to (z1, a1), we can see that i(λ([z1]), λ([a1])) 6= 0.
Since i(λ([z1]), λ([a1])) 6= 0, i(λ([z1]), λ([a2])) 6= 0, and i(λ([z1]), λ([x])) =
0 for all x ∈ P \{a1, a2}, we see that a′1 and a′2 are adjacent to each other
with respect to P ′.

Consider the curve z2 given in Figure 11(iii). The set T = (P \ {a2})∪
{b2} is a pants decomposition on R. We see that i([z2], [x]) = 0 for all
x ∈ T \{a3} and there is an edge between [z2] and [x] for all x ∈ T \{a3}.
Since λ is edge preserving, we have i(λ([z2]), λ([x])) = 0 for all x ∈ T \{a3}
and there is an edge between λ([z2]) and λ([x]) for all x ∈ T \ {a3}.
This implies that either i(λ([z2]), λ([a3])) 6= 0 or λ([z2]) = λ([a3]). Since
i(λ([z2]), λ([b3])) = 0 and i(λ([a3]), λ([b3])) 6= 0 by Lemma 3.3, we cannot
have λ([z2]) = λ([a3]). So i(λ([z2]), λ([a3])) 6= 0. The set V = (P \
{a3}) ∪ {b3} is a pants decomposition on R. We see that i([z2], [x]) = 0
for all x ∈ V \ {a2} and there is an edge between [z2] and [x] for all
x ∈ V \ {a2}. Since λ is edge preserving, we have i(λ([z2]), λ([x])) = 0 for
all x ∈ V \ {a2} and there is an edge between λ([z2]) and λ([x]) for all
x ∈ V \ {a2}. This implies that either i(λ([z2]), λ([a2])) 6= 0 or λ([z2]) =
λ([a2]). Since i(λ([z2]), λ([b2])) = 0 and i(λ([a2]), λ([b2])) 6= 0 by Lemma
3.3, we cannot have λ([z2]) = λ([a2]). So i(λ([z2]), λ([a2])) 6= 0. Since
i(λ([z2]), λ([a2])) 6= 0, i(λ([z2]), λ([a3])) 6= 0, and i(λ([z2]), λ([x])) = 0 for
all x ∈ P \ {a2, a3}, we see that a′2 and a′3 are adjacent to each other
with respect to P ′. Similarly, a′i and a

′
i+1 are adjacent to each other with

respect to P ′ for all i = 1, 2, · · · , n− 4. �

Lemma 3.5. If x, y ∈ P and x is not adjacent to y with respect to P ,
then λ([x]) and λ([y]) have representatives in P ′ which are not adjacent
to each other with respect to P ′.
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Proof. It is enough to �nd two disjoint curves w and t such that w inter-
sects only x nontrivially and not the other curves in P ; t intersects only
y nontrivially and not the other curves in P ; and i(λ([w]), λ([x])) 6= 0;
i(λ([t]), λ([y])) 6= 0; i(λ([w]), λ([q])) = 0 for all q ∈ P \{x}; i(λ([t]), λ([q]))
= 0 for all q ∈ P \ {y}; i(λ([t]), λ([w])) = 0. By using Lemma 3.3, we
can see that for the pair ai and aj that are not adjacent to each other
with respect to P , the curves bi and bj would satisfy the above properties.
So we see that nonadjacency is preserved for every nonadjacent pair in
P . �

Lemma 3.6. There exists a homeomorphism h : R → R such that
h([x]) = λ([x]) for all x ∈ P = {a1, a2, · · · , an−3}.

Proof. The proof follows from Lemma 3.4 and Lemma 3.5; see Figure
11(iv). �

Lemma 3.7. We have the following: i([a′1], [b
′
1]) = 2; i([a′n−3], [b

′
n−3]) =

2; i([a′n−3], [c
′]) = 2; i([c′], [a′1]) = 2; and i([b′i], [b

′
i+1]) = 2 for all i =

1, 2, · · · , n− 4.

Proof. We will give the proof when n ≥ 6. The proof is similar when
n = 5. We will �rst show that i([a′1], [b

′
1]) = 2. Consider the curves

given in Figure 11(v). By Lemma 3.6, we have h([x]) = λ([x]) for
all x ∈ {a1, a2, · · · , an−3}. Let a′i be as shown in Figure 11(iv). Let
M ′ be the connected component of Ra′

3
(cut surface along a′3) bounded

by a′3 and four boundary components of R containing a′1. Let z′1 be
a representative of λ([z1]) which intersects minimally with all the ele-
ments in {a′1, a′2, a′3, b′1, b′2}. By Lemma 3.3, we have i([a′1], [b

′
1]) 6= 0.

Since there exists a homeomorphism sending the pair (a1, b1) to (b1, b2)
and i([a′1], [b

′
1]) 6= 0, by using similar curve con�gurations, we see that

i([b′1], [b
′
2]) 6= 0.

By Lemma 3.3, we have i([a′2], [b
′
2]) 6= 0. In the proof of Lemma 3.4,

we showed that i([z′1], [a
′
1]) 6= 0 and i([z′1], [a

′
2]) 6= 0.

By using the intersection information for each pair of curves in
{a′1, a′2, a′3, b′1, b′2, z′1} and using that λ is edge preserving, we can see that
the curves a′1, b

′
2, z
′
1, b
′
1, a
′
2 form a pentagon in C(R); see [15]. Since a′1

is a curve that separates a pair of pants and there is a homeomorphism
sending a1 to b2, by using similar curve con�gurations, we can see that
b′2 is a curve that separates a pair of pants. Since a′2 is a curve that
separates a genus zero surface with four boundary components and there
is a homeomorphism sending a2 to z1, we see that z′1 is a curve that
separates a genus zero surface with four boundary components on R. Us-
ing all this information about these curves and [15, Theorem 3.2], we
get i([a′1], [b

′
1]) = 2. Since, for each of the remaining pairs (x, y) in the
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statement of the lemma, there exists a homeomorphism sending the pair
(a1, b1) to (x, y) and i([a

′
1], [b

′
1]) = 2, by using similar curve con�gurations,

we get i([x], [y]) = 2. �

If f : R → R is a homeomorphism, then we will use the same nota-
tion for f and [f ]. Recall that C1 = {a1, a2, a3, · · · , an−3, b1, b2, b3, · · · ,
bn−3, c} where the curves are as shown in Figure 11(i). Let C2 = {w1, w2,
· · · , wn, r1, r2, · · · , rn} where the curves are as shown in Figure 12.

.

.

.

1w
wn

w2

.

.

.

1r
rn

r2

(i) (ii)

Figure 12. Curves in C2

Lemma 3.8. There exists a homeomorphism h : R → R such that
h([x]) = λ([x]) for all x ∈ C1.

Proof. The proof follows from Lemma 3.6, Lemma 3.7, and the fact that
λ is edge preserving; see Figure 11(vi). �

Lemma 3.9. There exists a homeomorphism h : R → R such that
h([x]) = λ([x]) for all x ∈ C1 ∪ C2.

Proof. Let h : R→ R be a homeomorphism which satis�es the statement
of Lemma 3.8. We will give the proof when n ≥ 6. The proof for n = 5
is similar. Consider the curves in C2 given in Figure 12. There exists a
homeomorphism φ : R→ R of order two such that the map φ∗ induced by
φ on C(R) sends the isotopy class of each curve in C1 to itself and switches
[r1] and [w1]. Since there is a homeomorphism sending the pair (a1, b1)
to (a1, r1), by using Lemma 3.7, we see that i(λ[a1], λ[r1]) = 2. Similarly,
we have i(λ[a1], λ[w1]) = 2; i(λ[b1], λ[r1]) = 2; and i(λ[b1], λ[w1]) = 2.
The curves r1 and w1 are the only nontrivial curves up to isotopy disjoint
from a2, and intersect each of a1 and b1 nontrivially twice in the four-holed
sphere cut by a2. Since we know that h([x]) = λ([x]) for all these curves,
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λ preserves these properties; by replacing λ with λ ◦ φ∗, if necessary, we
can assume that we have h([w1]) = λ([w1]).
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Figure 13. Curves

Consider the curves given in Figure 13. The curve x1 is the unique
nontrivial curve up to isotopy that is disjoint from all the curves in
{c, a1, b2, b3, · · · , bn−3}. Since we know that h([x]) = λ([x]) for all these
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curves and λ is edge preserving, we have h([x1]) = λ([x1]). The curve
rn is the unique nontrivial curve up to isotopy that is nonisotopic to and
disjoint from each curve in {x1, w1, b2, b3, · · · , bn−3}. Since we know that
h([x]) = λ([x]) for all these curves and λ preserves these properties, we
have h([rn]) = λ([rn]). The curve x2 is the unique nontrivial curve up to
isotopy that is disjoint from all the curves in {c, an−3, b1, b2, · · · , bn−4}.
Since we know that h([x]) = λ([x]) for all these curves and λ is edge
preserving, we have h([x2]) = λ([x2]). The curve wn−1 is the unique non-
trivial curve up to isotopy that is nonisotopic to and disjoint from each
curve in {x2, rn, b1, b2, · · · , bn−4}. Since we know that h([x]) = λ([x]) for
all these curves and λ preserves these properties, we have h([wn−1]) =
λ([wn−1]).

The curve x3 is the unique nontrivial curve up to isotopy that is dis-
joint from all the curves in {c, a1, b1, b3, b4, · · · , bn−3}. Since we know
that h([x]) = λ([x]) for all these curves and λ is edge preserving, we have
h([x3]) = λ([x3]). The curve y is the unique nontrivial curve up to isotopy
that is nonisotopic to and disjoint from all the curves in {a1, x3, wn−1,
b3, b4, · · · , bn−3}. Since we know that h([x]) = λ([x]) for all these curves
and λ preserves these properties, we have h([y]) = λ([y]). The curve
x4 is the unique nontrivial curve up to isotopy that is disjoint from all
the curves in {c, a1, b2, b3, · · · , bn−4, an−3}. Since we know that h([x]) =
λ([x]) for all these curves and λ is edge preserving, we have h([x4]) =
λ([x4]). The curve z is the unique nontrivial curve up to isotopy that is
nonisotopic to and disjoint from all the curves in {c, y, x4, b2, b3, · · · , bn−4}.
Since we know that h([x]) = λ([x]) for all these curves and λ preserves
these properties, we have h([z]) = λ([z]). The curve r1 is the unique non-
trivial curve up to isotopy that is nonisotopic to and disjoint from each
curve in {a2, z, b3, b4, · · · , bn−3, an−3}. Since we know that h([x]) = λ([x])
for all these curves and λ preserves these properties, we have h([r1]) =
λ([r1]). Hence, we have h([w1]) = λ([w1]) and h([r1]) = λ([r1]). Similarly,
we get h([wi]) = λ([wi]) for all i = 2, 3, · · · , n and h([ri]) = λ([ri]) for all
i = 2, 3, · · · , n. �

We will use the notation hx for the half twist along x. Consider the
curves in Figure 11(i). The group ModR can be generated by {hx : x ∈
{a1, b1, b2, · · · , bn−3, an−3, c}}; see [4, Corollary 4.15]. Let G = {hx :
x ∈ {a1, b1, b2, · · · , bn−3, an−3, c}}. Let h : R → R be a homeomorphism
which satis�es the statement of Lemma 3.9. We know h([x]) = λ([x]) for
all x ∈ C1 ∪ C2. We will follow the techniques given by Irmak and Paris
[13] to obtain the homeomorphism we want.
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Lemma 3.10. For all f ∈ G, there exists a set Lf ⊂ C(R) such that
λ([x]) = h([x]) for all x ∈ Lf ∪ f(Lf ). The set Lf can be chosen to have
trivial stabilizer.

Proof. We have h([x]) = λ([x]) for all x ∈ C1 ∪ C2 by Lemma 3.9. Let
f ∈ G. For f = hb1 , let Lf = {a1, b1, b2, · · · , bn−3, an−3, c, wn−1}. The
set Lf has trivial stabilizer. We know λ([x]) = h([x]) for all x ∈ Lf .
We will check the equation for hb1(a1) and hb1(b2) since the other curves
in Lf are �xed by hb1 . Consider the curves given in Figure 14(i),(ii).
We see that w1 = hb1(a1) and r2 = hb1(b2). So, by Lemma 3.9, we
have λ([hb1(a1)]) = h([hb1(a1)]) and λ([hb1(b2)]) = h([hb1(b2)]). So, when
f = hb1 , we have λ([x]) = h([x]) for all x ∈ Lf ∪ f(Lf ).
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Figure 14. Half-twists

For f = hb2 , let Lf = {a1, b1, b2, · · · , bn−3, an−3, c, wn}. The set Lf

has trivial stabilizer. We know λ([x]) = h([x]) for all x ∈ Lf . We will
check the equation for hb2(b1) and hb2(b3) since the other curves in Lf are
�xed by hb2 . Consider the curves given in Figure 14(iii),(iv). We see that
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w2 = hb2(b1) and r3 = hb2(b3). So, by Lemma 3.9, we have λ([hb2(b1)]) =
h([hb2(b1)]) and λ([hb2(b3)]) = h([hb2(b3)]). So, when f = hb2 , we have
λ([x]) = h([x]) for all x ∈ Lf ∪ f(Lf ).

For f ∈ G \ {hb1 , hb2}, similarly we let Lf = {a1, b1, b2, · · · ,
bn−3, an−3, c, wf} where wf ∈ {w1, w2, · · · , wn} and wf is �xed by f .
Similar to the previous cases, we have λ([x]) = h([x]) for all x ∈ Lf ∪
f(Lf ). �

Theorem 3.11. There exists a homeomorphism h : R → R such that
H(α) = λ(α) for every vertex α in C(R) where H = [h], and this homeo-
morphism is unique up to isotopy.

Proof. The proof is similar to the proof of Theorem 2.10 using Lemma
3.9 and Lemma 3.10. �
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