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ENDPOINTS OF INVERSE LIMITS FOR

A FAMILY OF SET-VALUED FUNCTIONS

LORI ALVIN AND JAMES P. KELLY

Abstract. We study the endpoints of inverse limits of set-valued
functions. In a previous article (2016), one of the authors studied
this topic using R. H. Bing's de�nition of endpoints (most often
associated with chainable continua), and showed that if a set-valued
function F has its inverse equal to the union of continuous, single-
valued functions, then a point p = (p0, p1, . . .) is an endpoint of
lim←−F if and only if π[0,n](p) is an endpoint of π[0,n](lim←−F ) for
in�nitely many n ∈ N. The question was posed whether this same
result would hold if instead we used A. Lelek's de�nition of endpoint
(most often associated with dendroids).

We present an example giving a negative answer to this ques-
tion. We go on to give characterizations for the sets of endpoints
for a family of set-valued functions. These functions have graphs
which consist of a symmetric tent map and a straight line connect-
ing the critical point to either (0, 1), ( 1

2
, 1), or (1, 1). The endpoints

of inverse limits of tent maps are well-studied, but we show that
the addition of the straight line fundamentally alters the set of
endpoints.

1. Introduction

Suppose that F : [0, 1]→ 2[0,1] is an upper semi-continuous set-valued
function and that p ∈ lim←−F . Assume the following de�nition of an end-
point of a continuum: p is an endpoint of the continuum X if for any two
subcontinua H,K ⊆ X which both contain p, either H ⊆ K or K ⊆ H.
(This de�nition is given by R. H. Bing in [4] and is primarily used in the
context of arc-like continua.) Using this de�nition, it is shown in [7, The-
orem 1.2] that p is an endpoint of lim←−F provided that for in�nitely many
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234 L. ALVIN AND J. P. KELLY

n ∈ N, (p0, p1, . . . , pn−1) is an endpoint of

Γn =

{
x ∈

n−1∏
i=0

X : xi−1 ∈ F (xi) for all 1 ≤ i < n

}
.

Additionally, if the function F has its inverse equal to the union of map-
pings, then p is an endpoint of lim←−F if and only if (p0, p1, . . . , pn−1) is an

endpoint of Γn for all (in�nitely many) n ∈ N [7, Theorem 1.3].
There are several other de�nitions for what it means for a point to lie

at the �end� of a continuum, including those of A. Lelek [8] and Harlan
C. Miller [9]. Lelek's de�nition states that a point p is an endpoint of the
continuum X if p is an endpoint of any arc in X which contains p. Miller's
de�nition states that a point p is a terminal point in a continuum X if
every irreducible continuum inX containing p is irreducible between p and
some other point. It is observed in [7] that if either Lelek's or Miller's
de�nition is used for set-valued functions satisfying the union of mappings
property, then if p is an endpoint of lim←−F , then (p0, p1, . . . , pn−1) is an
endpoint of Γn for all n ∈ N. However, it remains an open question as
to whether (p0, p1, · · · , pn−1) being an endpoint of Γn for all (in�nitely
many) n ∈ N implies that p is an endpoint of lim←−F (see [7, Quesion 3.1]).

In this paper, we show that if we assume Lelek's de�nition of an end-
point, then there exists a set-valued function whose inverse is equal to
the union of mappings and (p0, p1, . . . , pn−1) is an endpoint of Γn for all
n ∈ N, but p is not an endpoint of lim←−F (Example 3.1). This gives a

negative answer to [7, Question 3.1].

We go on in sections 4, 5, and 6 to explore the collection of endpoints
(using Lelek's de�nition) of inverse limits for a family of set-valued func-
tions that are tent maps with a sticker attached to the critical point.
The inverse limits of tent maps have been thoroughly studied, and much
is known about their inverse limits and, in particular, their collections
of endpoints; see [1], [2], [3], [5]. However, by adding to the graph a
straight line connecting the critical point to either (1,1), (0,0), or ( 1

2 ,1),
we completely alter the set of endpoints of the inverse limit.

2. Preliminaries

We begin this section with some de�nitions and terminology that will
be used throughout the paper. A continuum is a non-empty, compact,
connected metric space. An arc is any space which is homeomorphic to
the closed interval [0, 1]. Clearly, an arc A is a continuum, and if we let
h : [0, 1] → A be a homeomorphism, then we refer to h(0) and h(1) as
endpoints of A. We would like to extend the concept of an endpoint of
an arc to that of an endpoint of a continuum, and several de�nitions of



ENDPOINTS OF SET-VALUED FUNCTIONS 235

endpoints have been used. The most common de�nition of an endpoint,
given by Bing, is that p is an endpoint of the continuum X if for any two
subcontinua of X both containing p, one of them contains the other; we
note that this de�nition does not align with our intuitive understanding
of an endpoint in the case of a triod. Thus, if the continuum contains any
triods, we must use a di�erent de�nition.

In this paper, unless otherwise stated, we use Lelek's de�nition of an
endpoint: A point p ∈ X is an endpoint of X if and only if p is an
endpoint of every arc in X that contains p. (More generally, if X is a
compact metric space, we say p is an endpoint of X if it is an endpoint of
its connected component in X.)

Given a continuum X, we de�ne 2X to be the space consisting of all
non-empty, compact subsets of X. Given a function F : X → 2Y , we
de�ne its graph to be the set Γ(F ) = {(x, y) : y ∈ F (x)}. It is known that
F is upper semi-continuous if and only if Γ(F ) is closed in X × Y [6].

Let X be a sequence of continua and let F be a sequence of upper
semi-continuous functions such that for all i ∈ N, Fi : Xi → 2Xi−1 ; then
the pair {X,F} is called an inverse sequence. The inverse limit of the

inverse sequence {X,F} is the set

lim←−F =

{
x ∈

∞∏
i=0

Xi : xi−1 ∈ Fi(xi) for all i ∈ N

}
.

Given the inverse sequence {X,F}, we de�ne Γ1 = X0, and for n ≥ 2, we
de�ne

Γn =

{
x ∈

n−1∏
i=0

X : xi−1 ∈ Fi(xi) for all 1 ≤ i < n

}
.

Also, for each n ≥ 0, we de�ne projection mappings

πn: lim←−F→ Xn and π[0,n−1]: lim←−F→ Γn

by πn(x) = xn and π[0,n−1](x) = (x0, x1, · · · , xn−1), respectively.
Given a continuum X and an upper semi-continuous function F : X →

2X , there is a naturally induced inverse sequence {X,F} where for all
i ∈ N, Xi−1 = X and Fi = F . In this case, we simply denote the
associated inverse limit of F by lim←−F .

We will also consider spaces of forward orbits. Let X be a sequence of
spaces and f be a sequence of continuous functions such that for all i ≥ 0,
fi:Xi → Xi+1. Then we de�ne

lim−→ f =

{
x ∈

∞∏
i=0

Xi : xi = fi(xi−1) for all i ≥ 0

}
.
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Clearly, lim−→ f is homeomorphic to X0. Just as with inverse limits, in the
case where each Xi is the same space X and each fi is the same function
f , we write lim−→ f .

The following result is given in [7] using Bing's de�nition of endpoint.

Theorem 2.1 ([7, Theorem 1.3]). Let {X,F} be an inverse sequence.

Suppose that for each i ∈ N there exists a collection

{f (i)
α : Xi−1 → Xi}α∈Ai

of continuous functions such that

Γ(F−1
i ) =

⋃
α∈Ai

Γ(f (i)
α ).

Then for every p ∈ lim←−F, the following are equivalent using Bing's de�-

nition of an endpoint.

(1) p is an endpoint of lim←−F.
(2) (p0, . . . , pn−1) is an endpoint of Γn for in�nitely many n ∈ N.
(3) (p0, . . . , pn−1) is an endpoint of Γn for all n ∈ N.

In this paper, we show that this theorem fails to hold true if we assume
Lelek's de�nition of an endpoint. All of our examples in this paper make
the assumption that the function F : [0, 1]→ 2[0,1] is such that there is a
pair of continuous functions f, g : [0, 1]→ [0, 1] such that

Γ(F−1) = Γ(f) ∪ Γ(g).

Then lim←−F = lim−→(f ∪ g). In order to demonstrate the di�erence in using
Lelek's de�nition we provide the de�nition of a branch point of lim←−F .

Note that if x ∈ lim←−F , then x = (x0, x1, x2, . . .) is such that x0 ∈ [0, 1]

and xi+1 ∈ {f(xi), g(xi)} for all i ≥ 0. Let

Σ = {h = (h1, h2, h3, . . .) : hi ∈ {f, g} for all i ∈ N}

and

Σn = {(h1, h2, . . . , hn−1) : hi ∈ {f, g}}.
Given h = (h1, h2, . . . , hn−1) ∈ Σn, we de�ne

h(x0) = (x0, h1(x0), h2(h1(x0)), . . . , hn−1(hn−2(. . . (h1(x0)))))

and

h([0, 1]) = {h(x0) : x0 ∈ [0, 1]}.
Thus, Γn =

⋃
h∈Σn

h([0, 1]). A point (x0, . . . , xn−1) ∈ Γn is called a
branch point of Γn if there exist h, j ∈ Σn such that

(x0, . . . , xn−1) ∈ h([0, 1]) ∩ j([0, 1]),
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(x0, . . . , xn−1) is on the boundary of h([0, 1])∩j([0, 1]), and (x0, . . . , xn−1)
is not an endpoint of h([0, 1]) or j([0, 1]). That is, intuitively (x0, . . . , xn−1)
is precisely the point where the arcs h([0, 1]) and j([0, 1]) diverge. Sim-
ilarly, we will refer to the point x = (x0, x1, . . .) as a branch point of

lim←−F if (x0, . . . , xn−1) is a branch point of Γn for some n. In this case,
there will exist two sequences of functions h, j ∈ Σ such that x is on
the boundary of the intersection of the arcs lim−→h = lim−→(h1, h2, . . .) and

lim−→ j = lim−→(j1, j2, . . .) and x is not an endpoint of either arc. Note that if

h = (f, f, f, . . .), we simply write lim−→h = lim−→ f .

Finally, in order to show that Theorem 2.1 does not hold if we assume
Lelek's de�nition of an endpoint, our functions F : [0, 1] → 2[0,1] are
set-valued functions constructed from symmetric tent maps. We de�ne
a symmetric tent map Ts : [0, 1] → [0, 1] by Ts(x) = min{sx, s(1 − x)}
where s ∈ [0, 2]; here, s is referred to as the slope of the tent map.

3. A Counterexample

In this section, we provide an example of a set-valued function F with
Γ(F−1) = Γ(f) ∪ Γ(g), such that there exists a point p = (p0, p1, p2, . . .)
with the property that (p0, . . . , pn−1) is an endpoint of Γn for all n ∈ N,
but p is not an endpoint of lim←−F . This shows that Theorem 2.1 does not
hold if we assume Lelek's de�nition of an endpoint.

Example 3.1. Let F : [0, 1]→ 2[0,1] be the set-valued function obtained

by attaching the line segment connecting the points ( 1
2 ,

1+
√

5
4 ) and (1, 1)

to the tent map with slope s = 1+
√

5
2 . See Figure 1. We will show that

the point p = (1, 1, 1, 1, . . .) is such that (1, 1, . . . , 1) ∈ Γn is an endpoint
of Γn for all n ∈ N, but p is not an endpoint of lim←−F .

Figure 1. The set-valued function F : [0, 1]→ 2[0,1]
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In this example, we may think of the inverse of F as the union of two
mappings as is seen in �gures 2 and 3.

f

Figure 2. f : [0, 1]→ [0, 1]

g

Figure 3. g : [0, 1]→ [0, 1]

Note that 1 is an endpoint of Γ1 = [0, 1] and (1, 1) is an endpoint of
Γ2. In general, (1, 1, . . . , 1) is always an endpoint of Γn. We have drawn
Γ2 in Figure 4 and Γ3 in Figure 5 for the reader.

(1, 1)

(0, 1)(0, 0)

( 1+
√

5
4 , 1

2 )

Figure 4. Γ2

Observe that Γ2 is the union of the arcs (x0, f(x0)) and (x0, g(x0))
where x0 ∈ [0, 1]; further, these two arcs precisely coincide on (x0, f(x0)) =

(x0, g(x0)) where x0 ∈ [ 1+
√

5
4 , 1]. Note that ( 1+

√
5

4 , 1
2 ) is a branch point of

Γ2 because it is the point where the two arcs (x0, f(x0)) and (x0, g(x0))
diverge; for ease, we will say that it is the point where the arcs associated

with (f) and (g) diverge. The points ( 1+
√

5
4 , 1

2 ,
√

5−1
4 ), ( 1+

√
5

4 , 1
2 ,

5−
√

5
4 ),

( 3
√

5−3
4 , 1+

√
5

4 , 1
2 ), and (

√
5−1
4 , 1+

√
5

4 , 1
2 ) are branch points for Γ3; they rep-

resent the places where the arcs associated with (f, f), (f, g), (g, f), and
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(1, 1, 1)

(0, 1, 1)(0, 0, 0)

( 1+
√

5
4 , 1

2 ,
√

5−1
4 ) ( 1+

√
5

4 , 1
2 ,

5−
√

5
4 )

(0, 0, 1)

(
√

5−1
4 , 1+

√
5

4 , 1
2 )

( 3
√

5−3
4 , 1+

√
5

4 , 1
2 )

Figure 5. Γ3

(g, g) diverge. In lim←−F , every branch point occurs precisely at those points
x where xi = 1+

√
5

4 for some i.
Observe that lim←−F contains lim−→ f ∪ lim−→ g, where lim−→ f is an arc with

endpoints (0, 0, 0, . . .) and (1, 1, 1, . . .) and lim−→ g is an arc with endpoints

(0, 1, 1, 1, . . .) and (1, 1, 1, . . .). We will show that (1, 1, 1, . . .) is the only
point common to lim−→ f and lim−→ g.

Let y be a point in lim−→ g with y 6= (1, 1, 1, . . .). Then gn(y0) → m,

where m is the �xed point of the tent map with slope 1+
√

5
2 ; we can thus

choose an N ∈ N such that whenever n ≥ N , d(yn,m) < m/2. Similarly,
let x be a point in lim−→ f with x 6= (1, 1, 1, . . .). Then fn(x0) → 0 and

there exists an N ′ ∈ N such that whenever n ≥ N ′, d(xn, 0) < m/2.
Thus, for all n ≥ max(N,N ′), d(xn, yn) > 0, and hence x 6= y. We
thus conclude that the only point in lim−→ f ∩ lim−→ g is (1, 1, 1, . . .). Hence,

lim−→ f ∪ lim−→ g is an arc with endpoints (0, 0, 0, . . .) and (0, 1, 1, 1, . . .) that

contains (1, 1, 1, . . .); therefore, (1, 1, 1, . . .) is not an endpoint of lim←−F .
The only possible endpoints of lim←−F are those endpoints of the form

(0, 0, 0, . . .), (1, 1, 1, . . .), or (0, . . . , 0, 1, 1, . . .),

because the endpoints of Γn are always of the form

(0, 0, . . . , 0), (1, 1, . . . , 1), or (0, . . . , 0, 1, . . . , 1).

A similar argument to the above will show that none of the points of
the form (0, . . . , 0, 1, 1, . . .) are endpoints of lim←−F . Therefore, (0, 0, 0, . . .)
is the only possible endpoint for lim←−F . We conclude this example by

showing that (0, 0, 0, . . .) is indeed an endpoint of lim←−F .
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Note that (0, 0, 0, . . .) is an endpoint of lim−→ f and that

B =

{
(x0, x1, x2, . . .) : x0 ∈

[
0,

1 +
√

5

2

]
, xi+1 = f(xi)

}
⊆ lim−→ f

is an arc in lim←−F with no branch points other than

(
1 +
√

5

2
, f(

1 +
√

5

2
), f2(

1 +
√

5

2
), . . .).

The only sequence of points that can converge to (0, 0, 0, . . .) in lim←−F are

all eventually either in B or in a subsequence of the arcs lim−→(f, g, g, . . .),

lim−→(f, f, g, g, . . .), lim−→(f, f, f, g, g, . . .), . . ., which limits onto lim−→ f . Thus,

(0, 0, 0, . . .) is an endpoint of every arc containing it and, hence, (0, 0, 0, . . .)
is an endpoint of lim←−F .

Recall that the collection of endpoints of the inverse limit of the tent

map T with slope s = 1+
√

5
2 is the set of points{

(0, 0, 0, . . .),

(
1

2
,

1 +
√

5

4
,

√
5− 1

4
, . . .

)
,

(
1 +
√

5

4
,

√
5− 1

4
,

1

2
, . . .

)
,(√

5− 1

4
,

1

2
,

1 +
√

5

4
, . . .

)}
.

Therefore, adding the arc connecting the points ( 1
2 ,

1+
√

5
4 ) and (1, 1) fun-

damentally changes the overall structure of the inverse limit by removing
all of the endpoints except the one at (0, 0, 0, . . .). We also note that in
this case, no additional endpoints were added by attaching the arc. This
may be considered a rather surprising result, as somehow the arc attached
to the critical point changes the �core� of the inverse limit. In the remain-
der of this paper, we explore the collection of endpoints for the family of
symmetric tent maps with various arcs attached to the critical point and
analyze similarities and di�erences since both the slope and the attached
arc are varied.

4. Functions Fs Obtained via Attaching onto

the Graph of Ts the Straight Line from

the Critical Point to (1, 1)

In this section, we consider set-valued functions obtained from the
symmetric tent map Ts by attaching an arc from the critical point to
(1, 1); we refer to the family of such functions by Fs, where s indicates
the slope of the associated tent map Ts. We observe how the collection
of endpoints varies as the parameter s is changed.
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4.1. Fs with 1 < s < 2.

The function in Example 3.1 is not unique; every set-valued function
Fs obtained from a symmetric tent map by attaching the arc connecting
the critical point and (1, 1) will also have (0, 0, 0, . . .) as the only endpoint
of lim←−Fs as long as the slope s of the symmetric tent map is such that
1 < s < 2. This is because every symmetric tent map with s > 1 has
two repelling �xed points. When the arc connecting the critical point and
(1, 1) is attached to the tent map, 1 is an attracting �xed point for the
forward iteration of Fs. Hence, when we decompose the inverse of the
set-valued function into two continuous maps (as was done in �gures 2
and 3), 1 will be a repelling �xed point of both f and g, and the other
�xed points in both f and g will be attracting. The same arguments as
in Example 3.1 will show that the only endpoint of lim←−Fs is (0, 0, 0, . . .)
when s > 1.

4.2. Fs with s = 1.

Now consider the function Fs where s = 1; the graph of F1 is included
in Figure 6. We give a description of lim←−F1 and show that it has countably

many endpoints including (0, 0, 0, . . .) which is the limit of the rest of the
endpoints.

Figure 6. The set-valued function F1 : [0, 1]→ 2[0,1]
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For ease, we decompose F−1
1 into the union of two mappings, as seen

in �gures 7 and 8.

f

Figure 7. f : [0, 1]→ [0, 1]

g

Figure 8. g : [0, 1]→ [0, 1]

Note that f is just the identity on [0, 1], whereas we may think of
g(x) = max{1 − x, x}. This implies that when considering lim−→(f ∪ g) =

lim←−F1, every point xn ∈ [ 1
2 , 1] is such that f(xn) = g(xn) = xn. Further,

if xn ∈ [0, 1
2 ], then f(xn) = xn and g(xn) = 1 − xn. Hence, every point

in lim←−F1 is of the form (a, a, a, . . .), (a, a, . . . , a, 1− a, 1− a, 1− a, . . .), or
(1− a, 1− a, 1− a, . . .) where a ∈ [0, 1

2 ].
Therefore, we may think of Γ2 as being the union of the following three

arcs:

(1) the arc of the form (a, a), where a ∈ [0, 1
2 ];

(2) the arc of the form (a, 1− a), where a ∈ [0, 1
2 ]; and

(3) the arc of the form (1− a, 1− a), where a ∈ [0, 1
2 ].

Similarly, we may think of Γ3 as the union of the following four arcs:

(1) the arc of the form (a, a, a), where a ∈ [0, 1
2 ];

(2) the arc of the form (a, a, 1− a), where a ∈ [0, 1
2 ];

(3) the arc of the form (a, 1− a, 1− a), where a ∈ [0, 1
2 ]; and

(4) the arc of the form (1− a, 1− a, 1− a), where a ∈ [0, 1
2 ].

Inductively, we may think of Γn as the union of n+1 arcs all joined at the
point ( 1

2 ,
1
2 , . . . ,

1
2 ). We conclude that, in general, the endpoints of lim←−F1

will be all points of the form (1, 1, . . .), (0, 0, . . .), or (0, . . . , 0, 1, 1, . . .).
That is, lim←−F1 will have a countable collection of endpoints. Additionally,

lim←−F1 will be a fan with vertex ( 1
2 ,

1
2 , . . .), as drawn in Figure 9.



ENDPOINTS OF SET-VALUED FUNCTIONS 243

Figure 9. Inverse limit of F1

4.3. Fs with s < 1.

We �nally consider the function Fs where s < 1; the graph of an
example of a function Fs with s < 1 is included in Figure 10. We give a
description of lim←−Fs and show that it has countably many endpoints and
that for any 0 < s < t < 1, lim←−Fs and lim←−Ft are homeomorphic.

Figure 10. The set-valued function Fs : [0, 1]→ 2[0,1], s < 1

Once again, we decompose F−1
s into the union of two mappings, as

seen in �gures 11 and 12.
Referring to the critical point of Ts as ( 1

2 ,
s
2 ), we note that the graphs

of f and g are identical on the domain [ s2 , 1], where s
2 <

1
2 . Observe that

lim−→ f is the arc with endpoints (0, 0, 0, . . .) and (1, 1, 1, . . .), whereas lim−→ g

is the arc with endpoints (0, 1, 1, . . .) and (1, 1, 1, . . .). Further, observe
that if xn ∈ [ s2 , 1], then xi ∈ [ s2 , 1] for all i ≥ n, and it will not mat-
ter whether we apply f or g to obtain xi+1. Therefore, without loss of
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f

Figure 11.

f : [0, 1]→ [0, 1]

g

Figure 12.

g : [0, 1]→ [0, 1]

generality, we can assume that once g has been applied to a point xi,
it will be applied for all subsequent iterates. We observe that the point
( s2 ,

1
2 , g( 1

2 ), g2( 1
2 ), . . .) is a branch point of lim←−Fs. That is, the arc connect-

ing ( s2 ,
1
2 , g( 1

2 ), g2( 1
2 ), . . .) and (1, 1, 1, . . .) in lim←−Fs is exactly the intersec-

tion of lim−→ f and lim−→ g, and it is at that point where the two arcs diverge.

Similarly, the point (f−1( s2 ), s2 ,
1
2 , g( 1

2 ), . . .) is a branch point of lim←−Fs;
the intersection of lim−→ f and lim−→(f, g, g, . . .) is precisely an arc connecting

(f−1( s2 ), s2 ,
1
2 , g( 1

2 ), . . .) and (1, 1, 1, . . .), where lim−→(f, g, g, . . .) is the arc

with endpoints (1, 1, 1, . . .) and (0, 0, 1, 1, 1, . . .). We may proceed in this
manner comparing lim−→ f and lim−→(f, . . . , f, g, g, . . .) and noting that due to

the location of branch points in lim←−Fs, every point of the form (0, 0, 0, . . .),

(1, 1, 1, . . .), or (0, . . . , 0, 1, 1, . . .) will be an endpoint of lim←−Fs. That is,
there is a countable collection of endpoints for lim←−Fs when s < 1. Fur-

ther, lim←−Fs is homeomorphic to lim←−Ft whenever s, t ∈ (0, 1); their inverse
limit, a comb, is drawn in Figure 13.

Figure 13. Inverse limit of Fs for s < 1
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5. Functions Gs Obtained via Attaching onto

the Graph of Ts the Straight Line from

the Critical Point to (0, 1)

In this section, we consider set-valued functions obtained from the
symmetric tent map Ts by attaching an arc from the critical point to
(0, 1); we refer to the family of such functions by Gs where s indicates
the slope of the associated tent map Ts. We observe how the collection
of endpoints varies as the parameter s is changed.

5.1. Gs with 1 < s < 2.

We �rst consider set-valued functions of the form Gs (1 < s < 2) where
Gs is the union of the symmetric tent map Ts and the arc connecting the
critical point and (0, 1). See Figure 14. We show that the set of endpoints
of lim←−Gs is an uncountable subset of {0, 1}ω.

Figure 14. The set-valued function Gs : [0, 1] → 2[0,1],
1 < s < 2

We may again think of the inverse of Gs as the union of two mappings
as is seen in �gures 15 and 16.

We note that

f(x) =

{
x
s x < s

2
1−x
2−s x ≥ s

2

and

g(x) =

{
1− x

s x < s
2

1−x
2−s x ≥ s

2

.

In this case, f has an attracting �xed point at 0 and g has an attract-
ing �xed point at s

s+1 . We emphasize that if x ≥ s
2 , then f(x) = g(x).

Further, g(x) > s
2 if and only if x < 2s−s2

2 , whereas f(x) < s
2 for all

x. Therefore, viewing lim←−Gs = lim−→ f ∪ g, note that any point x =
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f

Figure 15.

f : [0, 1]→ [0, 1]

g

Figure 16.

g : [0, 1]→ [0, 1]

(x0, x1, x2, . . .) ∈ lim←−Gs is such that if xi ∈ [ s2 , 1], then xi = g(xi−1)

and xi+1 = f(xi) = g(xi).
Consider all points in the set P = {p ∈ {0, 1}ω : pipi+1 6= 11}. Then

(p0, p1, . . . , pn−1) will be an endpoint of Γn for all n ∈ N, and every
endpoint of Γn will be of the form (p0, p1, . . . , pn−1) where pipi+1 6= 11;
therefore, P is the set of all potential endpoints for lim←−Gs. We claim that
the collection of endpoints of lim←−Gs will depend upon the parameter s
and the number of consecutive 0s that appear in the point p ∈ P .

Note that lim←−Gs contains lim−→ g ∪ lim−→(g, f, g, f, . . .), where lim−→ g is an

arc with endpoints (0, 1, 0, 1, . . .) and (1, 0, 1, 0, . . .), and lim−→(g, f, g, f, . . .)

is an arc with endpoints (0, 1, 0, 1, . . .) and (1, 0, 0, 1, 0, 1, 0, . . .). If 0 <

x0 < 2s−s2
2 , then g2(x0) = f(g(x0)) = x0

2s−s2 > x0. Further, as s
s+1

is an attracting �xed point of g, there will exist an even n such that

gn(x0) > 2s−s2
2 . Thus, gn+1(x0) 6= f(gn(x0)). Let x ∈ lim−→ g with x 6=

(0, 1, 0, 1, . . .) and y ∈ lim−→(g, f, g, f, . . .) with y 6= (0, 1, 0, 1, . . .). Without

loss of generality, suppose that x0 = y0 <
2s−s2

2 . Then there will exist
some n such that xn 6= yn. That is, x 6= y. Hence, the only point in
lim−→ g ∩ lim−→(g, f, g, f, . . .) is (0, 1, 0, 1, . . .), which implies (0, 1, 0, 1, . . .) is
not an endpoint of lim←−Gs. In general, any point with tail 010101 . . . will
not be an endpoint of lim←−Gs. A similar argument will show that for every
1 < s < 2 there exists an Ns ∈ N such that if the number of consecutive
0s in the tail of p ∈ P is always less than Ns, then p is not an endpoint
of lim←−Gs.

If p ∈ P has only �nitely many 1s, then p will be an endpoint of
lim←−Gs. This is because if we think of G−1

s as f ∪ g, then there exists

an N ∈ N such that pi = 0 for all i ≥ N , and pi+1 = f(pi). The only
branch points in lim←−Gs occur at points x where xn = s

2 for some n ∈ N,
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and since f(xi) <
1
2 for all xi ∈ [0, 1], there will exist an arc in lim←−Gs

with endpoints p and a branch point that contains no other branch points
of lim←−Gs. Hence, every arc in lim←−Gs that contains p will have p as an
endpoint. This argument can be modi�ed to show that for every s > 1
there exists an Ns ∈ N such that if the number of consecutive 0s in the
tail of p ∈ P is always greater than Ns, then p will be an endpoint of
lim←−Gs. We do note that if p ∈ lim←−Gs contains fewer than Ns consecutive
0s in�nitely often in its tail, then p may or may not be an endpoint
of lim←−Gs. This will depend upon the pattern of 1s and 0s immediately
following each such occurrence. In many ways, it is di�cult to completely
classify this collection of endpoints, since the characterization completely
depends upon the slope s and the pattern of blocks of consecutive 0s.

5.2. Gs with s = 1.

Now consider the function Gs where s = 1; the graph of G1 is included
in Figure 17. We show that the set of endpoints of lim←−G1 forms a Cantor

set which is a proper subset of {0, 1}ω.

Figure 17. The set-valued function G1 : [0, 1]→ 2[0,1]

Once again, the decomposition of G−1
1 into the union of two mappings

is seen in �gures 18 and 19.
Observe that f is just the tent map T1 and g is the function g(x) =

1− x. This implies that when considering lim←−G1 = lim−→ f ∪ g, every point

xn ∈ [ 1
2 , 1] is such that f(xn) = g(xn) = 1 − xn. Further, if xn ∈ [0, 1

2 ],
then f(xn) = xn and g(xn) = 1 − xn. Hence, every point in lim←−G1 is of

the form p = (p1, p2, p3, . . .) where every pi ∈ {a, 1− a} where a ∈ [0, 1
2 ],

and if pn = 1− a, then pn+1 = a.
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f

Figure 18.

f : [0, 1]→ [0, 1]

g

Figure 19.

g : [0, 1]→ [0, 1]

Therefore, we may think of Γ2 as being the union of three arcs:

(1) the arc of the form (a, a), where a ∈ [0, 1
2 ];

(2) the arc of the form (a, 1− a), where a ∈ [0, 1
2 ]; and

(3) the arc of the form (1− a, a), where a ∈ [0, 1
2 ].

Similarly, we may think of Γ3 as the union of the following �ve arcs:

(1) the arc of the form (a, a, a), where a ∈ [0, 1
2 ];

(2) the arc of the form (a, a, 1− a), where a ∈ [0, 1
2 ];

(3) the arc of the form (a, 1− a, a), where a ∈ [0, 1
2 ];

(4) the arc of the form (1− a, a, a), where a ∈ [0, 1
2 ]; and

(5) the arc of the form (1− a, a, 1− a), where a ∈ [0, 1
2 ].

Inductively, if we let B0 = 1, B1 = 2, and Bn = Bn−1 + Bn−2 for
n ≥ 2, then Γn is the union of Bn arcs all joined at ( 1

2 ,
1
2 , . . . ,

1
2 ). We

conclude that, in general, the endpoints of lim←−G1 will be all points which
are sequences of 0s and 1s such that no two 1s appear consecutively. That
is, lim←−G1 will have a Cantor set of endpoints. Additionally, lim←−G1 will be
a Cantor fan. This is similar to F1; however, recall that F1 had countably
many endpoints.

5.3. Gs with s < 1.

Now consider the function Gs where s < 1; the graph of Gs is included
in Figure 20. Just as in subsection 4.3, we show that for any 0 < s < t < 1,
lim←−Gs is homeomorphic to lim←−Gt. In addition, we show that the set of
endpoints of lim←−Gs is the same as the set of endpoints of lim←−G1.
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Figure 20. The set-valued function G1 : [0, 1]→ 2[0,1]

Figures 21 and 22 show the decomposition of G−1
s into the union of

two mappings.

f

Figure 21.

f : [0, 1]→ [0, 1]

g

Figure 22.

g : [0, 1]→ [0, 1]

We again have that

f(x) =

{
x
s x < s

2
1−x
2−s x ≥ s

2

and

g(x) =

{
1− x

s x < s
2

1−x
2−s x ≥ s

2

.

In this case, 0 is a repelling �xed point of f , and 1
2−s+1 is an attracting

�xed point for both f and g. Referring to the critical point of Ts as ( 1
2 ,

s
2 ),

we note that the graphs of f and g are identical on the domain [ s2 , 1], where
s
2 <

1
2 . Further, observe that if xn ∈ [ s2 , 1], then xn+1 ∈ [0, 1

2 ], and it will
not matter whether we apply f or g to obtain xn+1. That is, we will have
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branch points at x ∈ lim←−Gs whenever xn = s
2 for some n ∈ N. We again

have that the set P = {p ∈ {0, 1}ω : pipi+1 6= 11} is the collection of all
potential endpoints for lim←−Gs; indeed, the set P is precisely the collection
of endpoints for lim←−Gs.

Let A and B be two arcs in lim←−Gs with endpoint (0, 0, 0, . . .). Sup-
pose x is in A such that x0 6= 0 and y is in B such that y0 6= 0. Since
x0 6= 0, y0 6= 0, and both A and B contain (0, 0, 0, . . .), there exists
t0 ∈ (0,min(x0, y0)) such that the arc with endpoints (0, 0, 0, . . .) and
(t0, f(t0), f2(t0), . . .) is in both A and B. Thus, A ∩B contains a nonde-
generate arc with endpoint (0, 0, 0, . . .), and as A and B were arbitrarily
chosen with endpoint (0, 0, 0, . . .), it follows that (0, 0, 0, . . .) must be an
endpoint of every arc containing it. Therefore, (0, 0, 0, . . .) is an endpoint
of lim←−Gs. Similar arguments will show that every other point p ∈ P is
an endpoint of lim←−Gs. Therefore, the collection of endpoints in this case
is a Cantor set. Further, all such inverse limits in this case will be home-
omorphic, and the inverse limit is drawn in Figure 23. Note that each of
the drawn branches will have a Cantor set of branches, and each of those
branches will have a Cantor set of branches, etc.

Figure 23. Inverse limit of Gs for s < 1

6. Functions Hs Obtained via Attaching onto

the Graph of Ts the Straight Line from

the Critical Point to
(

1
2 , 1
)

In this section, we consider set-valued functions obtained from the
symmetric tent map Ts by attaching an arc from the critical point to
( 1

2 , 1); we refer to the family of such functions by Hs where s indicates
the slope of the associated tent map Ts. We observe how the collection
of endpoints varies as the parameter s is changed.
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6.1. Hs with 1 < s < 2.

Now consider the function Hs where 1 < s < 2; the graph of Hs is
included in Figure 24. We show that the set of endpoints of lim←−Hs is
equal to

{p ∈ lim←−Hs: pi = 1 for some i ≥ 0} ∪ {(0, 0, 0, . . .)}.

Figure 24. The set-valued function Hs : [0, 1]→ 2[0,1]

As in past cases, �gures 25 and 26 show the decomposition of H−1
s into

the union of two mappings f and g.

f

Figure 25.

f : [0, 1]→ [0, 1]

g

Figure 26.

g : [0, 1]→ [0, 1]

In this family, we have that

f(x) =

{
x
s x < s

2
1
2 x ≥ s

2
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and

g(x) =

{
1− x

s x < s
2

1
2 x ≥ s

2

.

Let

P = {p ∈ lim←−Hs : pi = 1 for some i ∈ N} ∪ {(0, 0, 0, . . .)}.
Observe that (p0, p1, . . . , pn−1) will be an endpoint of Γn for all n ∈ N,
and every endpoint of Γn will be of the form (p0, p1, . . . , pn−1) for some
p ∈ P ; therefore, P is the set of potential endpoints of lim←−Hs. We claim
that the collection of points p ∈ P is precisely the collection of endpoints
of lim←−Hs.

Note that lim−→ f is an arc with endpoints

(0, 0, 0, . . .) and

(
1,

1

2
, f

(
1

2

)
, f2

(
1

2

)
, . . .

)
,

whereas lim−→(g, f, f, f, . . .) is an arc with endpoints(
0, 1,

1

2
, f

(
1

2

)
, f2

(
1

2

)
, . . .

)
and

(
1,

1

2
, f

(
1

2

)
, f2

(
1

2

)
, . . .

)
.

If x ∈ lim←−Hs is a point with x0 ∈ [ s2 , 1] and xi = f(xi−1) for all i ∈ N,
then x is in both lim−→ f and lim−→(g, f, f, f, . . .). In general, let A and B be

two arcs in lim←−Hs with endpoint (1, 1
2 , f( 1

2 ), f2( 1
2 ), . . .). Suppose x ∈ A

with x0 6= 1 and y ∈ B with y0 6= 1. Let t0 = max(x0, y0,
s
2 ). Then

there exists a nondegenerate arc with endpoints (1, 1
2 , f( 1

2 ), f2( 1
2 ), . . .) and

(t0,
1
2 , f( 1

2 ), f2( 1
2 ), . . .) such that the arc is in both A and B. Thus, A∩B

contains a nondegenerate arc with endpoint (1, 1
2 , f( 1

2 ), f2( 1
2 ), . . .), and

as A and B were arbitrarily chosen with endpoint (1, 1
2 , f( 1

2 ), f2( 1
2 ), . . .),

it follows that (1, 1
2 , f( 1

2 ), f2( 1
2 ), . . .) must be an endpoint of every arc

containing it. Therefore, (1, 1
2 , f( 1

2 ), f2( 1
2 ), . . .) is an endpoint of lim←−Hs.

A similar argument will show that every point in P is an endpoint of
lim←−Hs.

6.2. Hs with s = 1.

Now consider the function Hs where s = 1; the graph of H1 is in-
cluded in Figure 27. We show that lim←−H1 is homeomorphic to lim←−F1 in
subsection 4.2. In particular, it has countably many endpoints.
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Figure 27. The set-valued function H1 : [0, 1]→ 2[0,1]

Once again, we decompose H−1
1 into the union of two mappings, as

seen in �gures 28 and 29.

f

Figure 28.

f : [0, 1]→ [0, 1]

g

Figure 29.

g : [0, 1]→ [0, 1]

Note that f(x) = g(x) = 1
2 for all x ∈ [ 1

2 , 1], f(x) = x on [0, 1
2 ], and

g(x) = 1 − x on [0, 1
2 ]. This implies that for lim←−H1 = lim−→(f ∪ g), every

point xn ∈ [ 1
2 , 1] is such that xi = 1

2 for all i ≥ n + 1, regardless of

whether f or g is applied to obtain xi. Additionally, if xn ∈ [0, 1
2 ], then

whenever f is applied to obtain xn+1, we will have xn+1 = xn ≤ 1
2 , and

whenever g is applied to obtain xn+1, we will have xn+1 = 1 − xn ≥ 1
2 .

Hence, every point in lim←−H1 is of the form p = (p1, p2, p3, . . .) where every

pi ∈ {a, 1− a, 1
2} where a ∈ [0, 1

2 ], and if pn ∈ {1− a, 1
2}, then pn+1 = 1

2 ,
and pn = a may be followed by either pn+1 = a or pn+1 = 1− a.

Therefore, we may think of Γ2 as the union of three arcs:

(1) the arc of the form (a, a), where a ∈ [0, 1
2 ];

(2) the arc of the form (a, 1− a), where a ∈ [0, 1
2 ]; and
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(3) the arc of the form (1− a, 1
2 ), where a ∈ [0, 1

2 ].

Similarly, we may think of Γ3 as the union of four arcs:

(1) the arc of the form (a, a, a), where a ∈ [0, 1
2 ];

(2) the arc of the form (a, a, 1− a), where a ∈ [0, 1
2 ];

(3) the arc of the form (a, 1− a, 1
2 ), where a ∈ [0, 1

2 ]; and

(4) the arc of the form (1− a, 1
2 ,

1
2 ), where a ∈ [0, 1

2 ].

Inductively, we may think of Γn as the union of n + 1 arcs, all joined at
the point ( 1

2 ,
1
2 , . . . ,

1
2 ). We conclude that, in general, the endpoints of

lim←−H1 will be all points of the form (0, 0, 0, . . .), (0, 0, . . . , 0, 1, 1
2 ,

1
2 , . . .),

or (1, 1
2 ,

1
2 , . . .). That is, lim←−H1 will have a countable collection of end-

points. Additionally, lim←−H1 is homeomorphic to lim←−F1; that is, lim←−H1 is

a countable fan with vertex ( 1
2 ,

1
2 , . . .).

6.3. Hs with s < 1.

We �nally consider the function Hs where s < 1; the graph of an
example of a function Hs with s < 1 is included in Figure 30. We show
that lim←−Hs is homeomorphic to lim←−Fs in subsection 4.3. In particular, for
each 0 < s < t < 1, the inverse limits lim←−Hs and lim←−Ht are homeomorphic
with countably many endpoints.

Figure 30. The set-valued function Hs : [0, 1]→ 2[0,1]

Figures 31 and 32 show the decomposition of H−1
s into the union of

two mappings.
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f

Figure 31.

f : [0, 1]→ [0, 1]

g

Figure 32.

g : [0, 1]→ [0, 1]

Referring to the critical point of Ts as ( 1
2 ,

s
2 ), the graphs of f and g

are identical on the domain [ s2 , 1], where s
2 < 1

2 . Note that lim−→ f is the

arc with endpoints (0, 0, 0, . . .) and (1, 1
2 ,

1
2 , . . .), whereas lim−→ g is the arc

with endpoints (0, 1, 1
2 ,

1
2 , . . .) and (1, 1

2 ,
1
2 , . . .). Further, observe that if

xn ∈ [ s2 , 1], then xi = 1
2 ∈ [ s2 , 1] for all i ≥ n and it will not matter

whether we apply f or g to obtain xi+1. Therefore, without loss of gen-
erality, we can assume that once g has been applied to a point xi, it will
be applied to all subsequent iterates. The point ( s2 ,

1
2 ,

1
2 , . . .) is a branch

point in lim←−Hs. That is, the arc connecting ( s2 ,
1
2 ,

1
2 , . . .) and (1, 1

2 ,
1
2 , . . .)

is exactly the intersection of lim−→ f and lim−→ g, and it is exactly at this
point where the two arcs diverge. Let A and B be arcs with endpoint
(1, 1

2 ,
1
2 , . . .). Let x ∈ A be such that x0 6= 1 and y ∈ B be such that

y0 6= 1; let t0 = max{x0, y0,
s
2}. Then the non-degenerate arc with end-

point (t0,
1
2 ,

1
2 , . . .) and (1, 1

2 ,
1
2 , . . .) is contained in A ∩B (moreover, this

arc is contained in the arc connecting the branch point ( s2 ,
1
2 ,

1
2 , . . .) and

(1, 1
2 ,

1
2 , . . .)). As A and B were arbitrarily chosen arcs with the endpoint

(1, 1
2 ,

1
2 , . . .), it follows that (1, 1

2 ,
1
2 , . . .) is an endpoint of lim←−Hs. Due to

the location of the branch points in lim←−Hs, this argument can be general-

ized to show that every point of the form (0, 0, 0, . . .), (0, . . . , 0, 1, 1
2 ,

1
2 , . . .),

or (1, 1
2 ,

1
2 , . . .) is an endpoint of lim←−Hs. Further, by observing the end-

points of Γn, there are no other possible endpoints of lim←−Hs. Thus, there
is a countable collection of endpoints for lim←−Hs when s < 1. Addition-

ally, lim←−Hs is homeomorphic to lim←−Ht whenever s, t ∈ (0, 1), and lim←−Hs

is homeomorphic to lim←−Fs for all 0 < s < 1.
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7. Observations about Endpoints in This Family

of Set-Valued Functions

We would like to conclude this paper by making some observations
about the collections of endpoints of lim←−Ts, lim←−Fs, lim←−Gs, and lim←−Hs for

various parameters s ∈ (0, 2). First of all, for any symmetric tent map
Ts (0 < s < 2), the point (0, 0, 0, . . .) is always an endpoint of lim←−Ts and
will remain an endpoint of lim←−Fs, lim←−Gs, and lim←−Hs. No other points of
lim←−Ts will ever be an endpoint of lim←−Fs, lim←−Gs, or lim←−Hs; however, in
some cases, lim←−Fs, lim←−Gs, and lim←−Hs may contain other endpoints.

Recall that in the case where s > 1, the collection of endpoints of lim←−Ts
is always contained in the set F = {x ∈ lim←−Ts : xi ∈ ω(c, Ts) for all i ∈
N}, and for many parameters s, the collection of endpoints is exactly the
set F ; see [1], [5], [3], [10]. Hence, it may seem surprising that the only
endpoint of lim←−Fs is (0, 0, 0, . . .), regardless of which slope s > 1 is se-
lected. Although the collection of endpoints of lim←−Fs and lim←−Ft is the
same for s, t > 1, we make no claims about the overall structures of lim←−Fs
and lim←−Ft and how they compare to each other. The one commonality

is that the arc connecting the critical point and the point (1, 1) somehow
makes all the non-zero endpoints of lim←−Ts non-endpoints, while at the
same time not introducing any new endpoints. On the other, lim←−Gs will
always contain in�nitely many endpoints, and lim←−Hs will always contain
an uncountable collection of endpoints; again, none of the original end-
points of lim←−Ts will be endpoints of lim←−Gs or lim←−Hs, but in these cases,
additional endpoints are introduced due to the attached arc.

In the case where s = 1, lim←−T1 is precisely an arc with endpoints

(0, 0, 0, . . .) and ( 1
2 ,

1
2 ,

1
2 , . . .). Although ( 1

2 ,
1
2 ,

1
2 , . . .) is an endpoint of

lim←−T1, this point is no longer an endpoint of lim←−F1, lim←−H1, or lim←−G1;
however, each newly obtained inverse limit contains in�nitely many copies
of lim←−T1 that are all attached at ( 1

2 ,
1
2 ,

1
2 , . . .). It is rather interesting that

lim←−F1 is homeomorphic to lim←−H1 and each is a (countable) fan. It appears

that attaching an arc from the critical point to (1, 1) or from the critical
point to ( 1

2 , 1) will result in similar behavior because the domain of each
arc is contained in the image of the arc. However, when attaching an arc
from the critical point to (0, 1), the domain and range of the arc only
coincide on the value 1

2 . This will still result in a fan, but in this case,
lim←−G1 is Cantor fan. That is, somehow the arc from the critical point to

(0, 1) introduces more possible preimage paths than when the other two
arcs are attached.

In some ways, the most interesting di�erences between lim←−Ts, lim←−Fs,
lim←−Gs, and lim←−Hs occur when s < 1. For these parameters lim←−Ts is

a singleton point (0, 0, 0, . . .), but the other associated inverse limits are
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more interesting. As was the case when s = 1, lim←−Hs and lim←−Fs are
homeomorphic and lim←−Hs is homeomorphic to lim←−Ht when 0 < s, t < 1.
However, lim←−Gs is much more complicated than lim←−Fs and lim←−Hs and
as in the case when s = 1, there will be uncountably many endpoints for
lim←−Gs.

We were able to precisely draw the inverse limits lim←−Fs, lim←−Gs, and
lim←−Hs when 0 < s ≤ 1 because it is well known what lim←−Ts is in each
of those cases. Because lim←−Ts is much more complicated when s > 1
and lim←−Ts is embedded in lim←−Fs, lim←−Gs, and lim←−Hs, we do not have
a complete understanding of the structure of those inverse limits. It is
clear, based on studying the collection of endpoints for the inverse limits
for these families of set-valued functions, that adding even a small arc to
a function can have a signi�cant e�ect on the topological structure of the
associated inverse limit.
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