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MAHAVIER PRODUCTS, IDEMPOTENT RELATIONS,

AND CONDITION Γ

STEVEN CLONTZ AND SCOTT VARAGONA

Abstract. Clearly, a generalized inverse limit of metrizable spaces
indexed by N is metrizable, as it is a subspace of a countable prod-
uct of metrizable spaces. The authors previously showed that all
idempotent, upper semi-continuous, surjective, continuum-valued
bonding functions on [0, 1] (other than the identity) satisfy a cer-
tain Condition Γ; it follows that only in trivial cases can a gen-
eralized inverse limit of copies of [0, 1] indexed by an uncountable
ordinal be metrizable. The authors show that Condition Γ is, in
fact, guaranteed by much weaker criteria, proving a more general
metrizability theorem for certain Mahavier products.

1. Introduction

In the spirit of the celebrated work by William S. Mahavier [9] and by
W. T. Ingram and Mahavier [7], who �rst generalized traditional inverse
limits to those with set-valued bonding functions, researchers have sought
more ways to generalize inverse limits. One route proposed in [8] would be
to index the factor spaces of an inverse limit not necessarily by the natural
numbers, but rather by some other directed set. However, a poorly-
behaved directed set can cause an inverse limit to be empty [8]; therefore,
most research in this area has involved inverse limits with totally ordered
index sets.

Various results in recent years have shown that investigating totally or-
dered index sets other than the natural numbers is fertile ground for new
work. Ingram and Mahavier lay the foundation in [8] by proving some
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basic connectedness theorems. Notably, Patrick Vernon in [11] studies in-
verse limits on [0, 1] with set-valued functions indexed by the integers, and
he shows that such an inverse limit with a single bonding function could be
homeomorphic to a 2-cell�a striking result, considering Van Nall shows
in [10] that this could never happen for an inverse limit indexed by the
natural numbers. Later, the notion of a generalized inverse limit is further
generalized to the notion of a Mahavier product, which only requires the
index set to be a preordered set. Thus, the recent interest in Mahavier
products (e.g., Sina Greenwood and Judy Kennedy [4] and Wªodzimierz
J. Charatonik and Robert P. Roe [2]) has helped bring �alternate� index
sets further into the mainstream. In particular, in [2], Charatonik and
Roe prove theorems about Mahavier products indexed by arbitrary to-
tally ordered sets and, in the process, introduce some helpful terminology
in the study of generalized inverse limits. Therefore, given this context,
it is natural to consider generalized inverse limits (or Mahavier products)
indexed by ordinals.

In [3], we study the special case of a generalized inverse limit of copies
of [0, 1] with a single continuum-valued upper semi-continuous idempo-
tent bonding function. We prove that when f is a surjection other than
the identity, the graph of f must contain two distinct points 〈x, x〉 and
〈y, y〉 on the diagonal, in addition to a third point 〈x, y〉. This Condition
Γ is su�cient to guarantee that whenever the inverse limit is indexed by
an ordinal α, the inverse limit contains a copy of α+1. It therefore follows
that such an inverse limit is a metric continuum if and only if α is count-
able. When we authored [3], we suspected this to be merely a special case
of a more general trend. To this end, it will be shown that to guarantee
Condition Γ, [0, 1] may be replaced with any weakly countably compact
space, f need not be continuum-valued, and the surjectivity of f may be
replaced with a weaker assumption to prevent trivialities. Applying this
result, we also prove metrizability theorems for certain Mahavier products
indexed by ordinals.

2. Definitions and Conventions

Except when otherwise stated, we assume that all topological spaces
are Hausdor�. By convention, all natural numbers are ordinals, e.g.,
4 = {0, 1, 2, 3}. Let BA denote the set of functions from A to B; in
particular, X2 is the usual square of ordered pairs {〈x, y〉 : x, y ∈ X} (each
pair is a function from {0, 1} to X) and 2X is the Cantor set of functions
from X to {0, 1}. Let F (X) denote the non-empty closed subsets of X.

Given a relation R ⊆ X × Y , let R(x) = {y : xRy} = {y : 〈x, y〉 ∈ R};
we often will use letters f and g to de�ne relations and treat them as
set-valued functions in this way. Given relations or set-valued functions f
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and g and a set A, let f(A) = {f(x) : x ∈ A} and (f ◦ g)(x) = f(g(x)) =⋃
y∈g(x) f(y) = {z : ∃y(z ∈ f(y), y ∈ g(x))}. If f : X → F (X) or f ⊆ X2,

let f2 = f ◦ f .

De�nition 2.1. Suppose 〈P,≤〉 is a directed set (≤ is transitive and
re�exive, and each pair of points shares a common upper bound) and for
each p ∈ P , Xp is a space. Let Π =

∏
p∈P Xp; we will use boldface letters

to denote sequences in Π, e.g., x ∈ Π. Suppose further that for each
p ≤ q ∈ P , there is a set-valued bonding function fp,q : Xq → F (Xp) such
that for p ≤ q ≤ r, fp,r = fp,q ◦ fq,r with fp,p : Xp → F (Xp) de�ned by
fp,p(x) = {x}. Then the generalized inverse limit lim←−〈Xp, fp,q, P 〉 ⊆ Π is
given by

lim←−〈Xp, fp,q, P 〉 = {x ∈ Π : p ≤ q ⇒ x(p) ∈ fp,q(x(q))}.

The preceding de�nition is based upon the one given in [8, Ch. 2].
Much of the literature assumes that P is a total order, often simply ω =
N = {0, 1, 2, . . . }, but allowing for other orders, such as Z, enables the
construction of many interesting examples unattainable with simply ω
[11].

The study of generalized inverse limits typically focuses on upper semi-
continuous bonding functions fp,q : Xq → F (Xp), which for compact
spaces may be characterized as those that map points to non-empty sets
and whose graphs are closed in Xq ×Xp. In fact, it will be convenient to
simply consider this graph itself as a relation. This is exactly the approach
taken with Mahavier products in [2] and [4].

De�nition 2.2. Take the assumptions of the previous de�nition, but
let 〈P,≤〉 be a preordered set (≤ is transitive and re�exive) and let
fp,q ⊆ Xq × Xp such that fp,r ⊆ fp,q ◦ fq,r. Then the Mahavier prod-
uct M 〈Xp, fp,q, P 〉 ⊆ Π is given by

M 〈Xp, fp,q, P 〉 = {x ∈ Π : p ≤ q ⇒ x(p) ∈ fp,q(x(q))}.

Note that the condition fp,r ⊆ fp,q ◦ fq,r has been weakened from
equality, fp,q is an arbitrary relation from Xq to Xp, and the directed set
is now only preordered, as is done in [2].

De�nition 2.3. A Mahavier product M 〈Xp, fp,q, P 〉 is exact whenever
fp,r = fp,q ◦ fq,r for all p ≤ q ≤ r.

De�nition 2.4. A relation f ⊆ X ×Y is said to be left-total (also called
full [2]) if for all x ∈ X there exists y ∈ Y such that 〈x, y〉 ∈ f ; that is,
f(x) 6= ∅ for all x ∈ X.

Note that we will refrain from using the term �full� to describe such
relations, as �full� bonding functions are de�ned in another sense in [5].
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Observation 2.5. Exact Mahavier products bonded by closed-valued left-
total relations indexed by a directed set are generalized inverse limits.

De�nition 2.6. A left-total relation that is a closed subset of X × Y is
called USC.

Here USC stands for upper semi-continuous, as in the case that X and
Y are compact; this property may be characterized as follows: For every
x ∈ X and open set V ⊇ f(x), there exists an open neighborhood U of
x such that f(u) ⊆ V for all u ∈ U [7]. Put another way, the set-valued
function f : X → F (Y ) is continuous where F (Y ) is given the upper
Vietoris topology.

De�nition 2.7. A relation f ⊆ X×Y is surjective if, for all y ∈ Y , there
exists x ∈ X such that 〈x, y〉 ∈ f .

De�nition 2.8. An idempotent relation on f ⊆ X2 is one that satis�es
f2 = f .

Note that transitivity may be characterized by f2 ⊆ f , so all idem-
potent relations are transitive. Put another way, an idempotent relation
R ⊆ X2 satis�es xRz if and only if xRyRz for some y ∈ X; transitiv-
ity is the backwards implication. Assuming re�exivity, idempotence and
transitivity are equivalent: Let y = z, so xRz ⇔ xRzRz ⇔ xRyRz. Note
also that the inverse of an idempotent relation is idempotent.

The usual strict linear order < on Z is an example of a transitive yet
non-idempotent relation. Likewise, the strict linear order on any dense
subset of R is a non-re�exive idempotent relation.

Idempotent relations are of signi�cant interest when studying exact
Mahavier products of many copies of the same topological space.

Observation 2.9. If Xp = X and fp,q = f for all p < q, and there exist
p, q, r ∈ P such that p < q < r, then the bonding relation f in an exact
Mahavier product M 〈X, f, P 〉 must be idempotent.

Note that fp,p 6= f unless f is the identity, but for simplicity we still
simply write M 〈X, f, P 〉.

De�nition 2.10. For convenience, we call a USC idempotent surjective
relation f ⊆ X2 a V-relation.

Examples of V-relations are given in Figure 1 (the designated points
illustrate the de�nition of Condition Γ, given in �4). The next section will
outline how to construct and identify V-relations.
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Figure 1. Illustrating Condition Γ for V-relations on [0, 1]

3. Constructing V-Relations

The following propositions not only give necessary and/or su�cient
conditions for a relation f to be a V-relation, but also give the reader
a few tools for constructing simple V-relations from scratch. The �rst
proposition is a useful recharacterization of idempotence.

Proposition 3.1. Let X be a space and let f ⊆ X2 be USC and surjective.
Then f is a V-relation if and only if whenever A is the image of some
x ∈ X, then f(A) = A.

As an obvious consequence of Proposition 3.1, if f ⊆ X2 is a V-relation
and for some x ∈ X, f(x) = {y}, then f(y) = {y}.

Proposition 3.2. Let f ⊆ [0, 1]2 be USC. If f satis�es at least one of
the following conditions, then f is a V-relation.

(1) For each x ∈ [0, 1], f(x) = {x, 1− x} .
(2) The relation f is surjective, and for each x ∈ [0, 1], f(x) = [0, x]

or f(x) ⊆ {0, x}.
(3) The relation f is surjective, and for each x ∈ [0, 1], f(x) = [x, 1]

or f(x) ⊆ {x, 1}.
(4) For some non-empty A,B ⊆ [0, 1] with A∩B = ∅, we have f(a) =

[0, 1] for each a ∈ A and f(x) = B for each x ∈ [0, 1] \A.
(5) The relation f is surjective, and there exists b ∈ [0, 1] with b ∈

f(b) = B so that for all x ∈ [0, 1], either f(x) = {x}, f(x) = B,
or f(x) = {y} for some y ∈ B satisfying f(y) = {y}.

Proof. Each of the �ve conditions implies that f is surjective, so it remains
to verify that each condition implies that f is idempotent. In [6, p. 49],
Ingram observes that (1) implies f is idempotent. For (2), let x ∈ [0, 1].
We note that f(y) ⊆ [0, x] for every y ≤ x. Therefore, if f(x) = [0, x],
then, clearly, f2(x) = [0, x] = f(x). On the other hand, if f(x) = {0, x},
then f2(x) = f(0) ∪ f(x) = {0} ∪ {0, x} = f(x); the remaining cases are
obvious. The details for (3) are similarly straightforward and are left to
the reader.
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For (4), we note that when x ∈ A, f(x) = [0, 1] (so, of course, f2(x) =
[0, 1]), whereas if x ∈ [0, 1] \ A, then f(x) = B, so that f2(x) = f(B).
However, when b ∈ B, since b 6∈ A, it follows that f(b) = B; thus,
f2(x) = B, and we conclude that f is idempotent.

To prove that (5) implies f is idempotent, let x ∈ [0, 1]. If f(x) =
{x}, then, clearly, f2(x) = f(x). If f(x) = {y} for some y ∈ B with
f(y) = {y}, then f2(x) = f(y) = {y} = f(x). Finally, if f(x) = B, then
f2(x) = f(B); since f(b) ⊆ B for each b ∈ B, and there is some b ∈ B
that satis�es f(b) = B, it follows that f(B) = B. Thus, f2(x) = f(x) in
each case. �

Note that Proposition 3.2 implies that each of the relations pictured
in Figure 1 is a V-relation. (Of course, the su�cient conditions given in
Proposition 3.2 are by no means exhaustive.)

4. Condition Γ

De�nition 4.1. A relation f ⊆ X2 satis�es Condition Γ if distinct x, y ∈
X exist such that 〈x, x〉 , 〈x, y〉 , 〈y, y〉 ∈ f .

Note that in Figure 1, every example given other than the identity
satis�es Condition Γ. In fact, this section will show that every V-relation
other than the identity on a weakly countably compact space satis�es
Condition Γ.

De�nition 4.2. Let ι ⊆ X2 be the diagonal ι = {〈x, x〉 : x ∈ X}, i.e.,
the identity relation.

De�nition 4.3. For f ⊆ X × Y and A ⊆ X, let f � A = f ∩ (A× Y ).

Proposition 4.4. For f transitive, f � f(x) = f ∩ (f(x))2.

De�nition 4.5. A relation is said to be trivial if for all x ∈ X, f � f(x) =
ι � f(x).

Any trivial relation is idempotent, and, of course, ι is trivial, but other
trivial idempotent relations exist other than the identity. For example,
let t ⊆ 32 = {0, 1, 2}2 be de�ned by

t = {〈0, 0〉 , 〈1, 1〉 , 〈2, 0〉 , 〈2, 1〉}.

It follows that t � f(0) = t � {0} = ι � {0}, t � f(1) = t � {1} = ι � {1},
and t � f(2) = t � {0, 1} = ι � {0, 1}. Figure 2 shows examples of trivial
relations de�ned on [0, 1]; these do not satisfy Condition Γ.

Observing that none of the examples in Figure 2 are surjective, the
following proposition will allow us to ignore such exceptional cases when
considering V-relations other than the identity.
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Figure 2. Trivial idempotent relations on [0, 1] other
than ι

Proposition 4.6. Let f be a transitive surjective relation on X. Then
the following are equivalent:

(a) f = ι;
(b) |f(x)| = 1 for all x ∈ X;
(c) f is trivial.

Proof. (a) implies (b) trivially, so assume (b). For an arbitrary x ∈ X,
there exists some y ∈ X such that f(x) = {y}. Thus, f2(x) = {y} = f(y)
by transitivity, so it follows that f � {y} = {〈y, y〉} = ι � {y}, showing
(c).

Finally, assuming (c), let y ∈ X and, by surjectivity, choose x ∈ X
with y ∈ f(x). By triviality, f(y) = (f � f(x))(y) = (ι � f(x))(y) = ι(y),
showing (a). �

Corollary 4.7. The only trivial V-relation is ι.

We now aim to exploit the properties of non-trivial relations to pro-
duce Condition Γ in V-relations other than ι. To do this, we require the
following lemmas.

De�nition 4.8. A weakly countably compact space is a space such that
every in�nite subset has a limit point.

Assuming spaces are T2, this property is equivalent to countable com-
pactness: every countable open cover has a �nite subcover. But we will
need only this weaker characterization, and the remainder of this section
does not assume any separation axioms for the spaces under consideration.

Lemma 4.9. Let X be weakly countably compact. Every USC idempotent
relation f ⊆ X2 other than ι contains two points 〈y, y〉 and 〈x, y〉 for some
distinct x, y ∈ X.

Proof. Note �rst that if ι ⊆ f , then, since ι 6= f , the lemma follows
immediately. So let x0 ∈ X be a point where 〈x0, x0〉 6∈ f .

Suppose xi is de�ned for i ≤ n such that 〈xi, xj〉 ∈ f if and only if
i < j. Since {x0, . . . , xn}∩f(xn) = ∅, we may choose xn+1 6∈ {x0, . . . , xn}
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such that 〈xn, xn+1〉 ∈ f . Note that by idempotence, 〈xn+1, xi〉 6∈ f for
i ≤ n since xi 6∈ f(xn) = f2(xn) ⊇ f(xn+1). Similarly, 〈xi, xn+1〉 ∈ f for
i < n since 〈xi, xn〉 ∈ f and 〈xn, xn+1〉 ∈ f . If 〈xn+1, xn+1〉 ∈ f , then the
lemma is satis�ed by x = xn and y = xn+1.

If not, we have recursively constructed an in�nite set {xn : n < ω}.
Since X is a weakly countably compact space, {xn : n < ω} has a limit
point xω. Since {〈xn, xn+1〉 : n < ω} ⊆ f , it follows that 〈xω, xω〉 is a
limit point of f . Similarly, {〈x0, xn〉 : 0 < n < ω} ⊆ f , so it follows
that 〈x0, xω〉 is also a limit point of f . Since f is closed, these limit points
belong to f . Therefore, the lemma is witnessed by x = x0 and y = xω. �

Lemma 4.10. Let f ⊆ X2 be idempotent and left-total, and let x0 ∈
X. Then f � f(x0) and its inverse are idempotent, left-total, surjective
relations on f(x0).

Proof. Let g = f � f(x0). For each x ∈ f(x0), f(x) ⊆ f2(x0) = f(x0).
Thus, g(x) = f(x) 6= ∅ and g2(x) = f2(x) = f(x) = g(x), showing that
g is idempotent and left-total. It is also surjective: For all y ∈ f(x0),
it follows that y ∈ f2(x0), so there exists some x ∈ f(x0) such that
g(x) = f(x) = y. Since g is left-total, surjective, and idempotent, so is
g−1. �

Lemma 4.11. Let f ⊆ X2 be idempotent and left-total, and let x0 ∈
X witness that f is non-trivial. Then f � f(x0) and its inverse are
idempotent, left-total, surjective, non-trivial relations on f(x0).

Proof. By the previous lemma, g = f � f(x0) and g−1 are idempotent,
left-total, and surjective. By non-triviality, g 6= ι � f(x0), so g−1 6= ι �
f(x0) too. But since ι � f(x0) is the only surjective idempotent trivial
relation on f(x0), neither g nor g−1 is trivial. �

Theorem 4.12. Let X be weakly countably compact and let f ⊆ X2 be
an idempotent USC relation. Then the following are equivalent:

(a) f satis�es Condition Γ;
(b) f contains points 〈x, x〉 and 〈x, y〉 for some distinct x, y ∈ X;
(c) f is non-trivial.

Proof. (a) implies (b) trivially. Assuming (b), it follows that f � f(x) 6=
ι � f(x) since 〈x, y〉 ∈ f � f(x), showing (c).

Assuming (c), we may apply Lemma 4.11 to choose x0 such that g =
f � f(x0) and g−1 are idempotent, USC, surjective, non-trivial relations.
Then Lemma 4.9 allows us to conclude that g−1 contains points 〈x, x〉
and 〈y, x〉 for some distinct x, y ∈ X, so (b) is satis�ed.

Assume (b) such that 〈y, y〉 6∈ f . Note then that 〈y, x〉 6∈ f as otherwise
〈y, x〉 , 〈x, y〉 ∈ f would imply 〈y, y〉 ∈ f . Let z0 = x and z1 = y.
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Suppose zi is de�ned for i ≤ n+ 1 such that 〈zi, zj〉 ∈ f if and only if
i < j or i = j = 0. Since {z0, . . . , zn+1} ∩ f(zn+1) = ∅, we may choose
zn+2 distinct from zi for i ≤ n+1 such that 〈zn+1, zn+2〉 ∈ f . Note that by
idempotence, 〈zn+2, zi〉 6∈ f for i ≤ n+1 since zi 6∈ f(zn+1) = f2(zn+1) ⊇
f(zn+2). Similarly, 〈zi, zn+2〉 ∈ f for i < n + 1 since 〈zi, zn+1〉 ∈ f and
〈zn+1, zn+2〉 ∈ f . If 〈zn+2, zn+2〉 ∈ f , then Condition Γ is witnessed by
〈z0, z0〉, 〈z0, zn+2〉, and 〈zn+2, zn+2〉.

If not, we have recursively constructed an in�nite set {zn : n < ω}.
Since X is a weakly countably compact space, {zn : n < ω} has a limit
point zω. Since {〈zn, zn+1〉 : n < ω} ⊆ f , it follows that 〈zω, zω〉 is a limit
point of f . Similarly, {〈z0, zn〉 : n < ω} ⊆ f , so it follows that 〈z0, zω〉
is also a limit point of f . Since f is closed, these limit points belong to
f . Therefore, Condition Γ is witnessed by 〈z0, z0〉, 〈z0, zω〉, and 〈zω, zω〉,
showing (a). �

Corollary 4.13. Let X be weakly countably compact and let f 6= ι be a
V-relation on X. Then f satis�es Condition Γ.

It is worth noting that the strict linear order < on Q with the dis-
crete topology is an example of a non-trivial idempotent USC relation
on a space that is not weakly countably compact that does not satisfy
Condition Γ. Likewise, the strict lexicographic order < on the long ray
ω1 × [0, 1] with the topology induced by this linear order is an example
of a non-trivial idempotent left-total non-USC relation on a Hausdor�
countably compact space that does not satisfy Condition Γ.

5. Applications

Let α = {β : β < α} be an ordinal with its usual linear order. As
noted in [3], it is well known and easy to see that α + 1 as a totally
ordered topological space is metrizable if and only if α is countable. If α
is uncountable, then the �rst uncountable ordinal ω1 is a point of non-
�rst-countability in α + 1; if α is countable, then α + 1 is regular and
second-countable.

Theorem 5.1. Let X be a T1 topological space, let α be an uncountable
ordinal, and let f be a relation on X (with f ⊆ f ◦f) satisfying Condition
Γ. Then the Mahavier product M 〈X, f, α〉 contains a copy of α + 1;
therefore, M 〈X, f, α〉 cannot be metrizable.

Proof. Let 〈x, x〉 , 〈x, y〉 , 〈y, y〉 ∈ f for distinct x, y ∈ X. For γ ≤ α, de�ne
xγ ∈M 〈X, f, α〉 by xγ(β) = y for β < γ and xγ(β) = x for γ ≤ β < α.
That is, xγ is de�ned such that γ is the least ordinal such that xγ(γ) = x.

We will show that the map γ 7→ xγ is a homeomorphism from α + 1
to A = {xγ : γ ≤ α} ⊆ M 〈X, f, α〉. This may be accomplished by
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comparing subbases: For β ≤ α, the subbasic open set [0, β) ⊆ α + 1
maps to the set {x ∈ A : x(β) = x} ⊆ A, which equals the open set
A ∩

∏
γ<α Uγ where Uβ = X \ {y} and Uγ = X otherwise. Similarly, the

subbasic open set (β, α] ⊆ α+ 1 maps to the set {x ∈ A : x(β) = y} ⊆ A,
which equals the open set A∩

∏
γ<α Uγ where Uβ = X \ {x} and Uγ = X

otherwise. And since A ∩
∏
γ<α Uγ describes every subbasic open subset

of A for Uβ ∈ {∅, X \ {x}, X \ {y}, X} and Uγ = X otherwise, it follows
that this map is indeed a homeomorphism. �

Noting that in metrizable spaces, compactness is characterized by weak
countable compactness, we have the following corollary.

Corollary 5.2. Let X be any compact metrizable space, let α be an ordi-
nal, and let f 6= ι be a V-relation on X. Then the exact Mahavier product
M 〈X, f, α〉 contains a copy of α+ 1; therefore, M 〈X, f, α〉 is metrizable
if and only if α is countable.

As noted in [3], a bit more can be said.

De�nition 5.3. The Σ-product of reals ΣRκ for a cardinal κ is given by

{x ∈ Rκ : |{α < κ : x(α) 6= 0}| ≤ ℵ0}.

Note ΣRω = Rω, and since every compact metrizable space embeds
in [0, 1]ω, it follows that every compact metrizable space embeds in a
Σ-product of reals.

Compact subspaces of ΣRκ are known as Corson compacts; see, e.g., [1]
for an investigation into the applications of Corson compacts in functional
analysis.

Corollary 5.4. Let X be a T1 topological space, let α be an uncountable
ordinal, and let f be a relation on X (with f ⊆ f ◦f) satisfying Condition
Γ. Then the Mahavier product M 〈X, f, α〉 cannot be embedded in a Σ-
product of reals.

Proof. The Mahavier product M 〈X, f, α〉 contains a copy of α+1, which
cannot be embedded into a Σ-product of reals. �
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