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TOPOLOGY AND

EXPERIMENTAL DISTINGUISHABILITY

CHRISTINE A. AIDALA, GABRIELE CARCASSI, AND MARK J. GREENFIELD

Abstract. In this work, we introduce the idea that the primary
application of topology in experimental sciences is to keep track of
what can be distinguished through experimentation. This link pro-
vides understanding and justi�cation as to why topological spaces
and continuous functions are pervasive tools in science. We �rst
de�ne an experimental observation as a statement that can be ver-
i�ed using an experimental procedure and show that observations
are closed under �nite conjunction and countable disjunction. We
then consider observations that identify elements within a set and
show how they induce a Hausdor� and second-countable topology
on that set, thus identifying an open set as one that can be as-
sociated with an experimental observation. We then show that
experimental relationships are continuous functions, as they must
preserve experimental distinguishability, and that they are them-
selves experimentally distinguishable by de�ning a Hausdor� and
second-countable topology for this collection.

1. Introduction

The successful use of mathematical ideas in experimental sciences is
long established and celebrated [8]. Topology is perhaps the most wide-
spread, either directly (see [6] and [3]) or as a foundation to other tools
(see [5] and [1]). This leads one to ask, why is it so successful? What prop-
erty is captured by topological spaces that is so fundamental for scienti�c
investigation?
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We believe experimental distinguishability to be the relevant concept.
The notion of �nearness� captured by topologies keeps track of how hard
it is to tell two elements apart via scienti�c observation. The standard
topology on the real line, for example, captures the inability to measure
a continuous value with in�nite precision. This connection holds in cases
where a metric would not be physically meaningful (e.g., phase space) and
in discrete spaces (where each element can be individually identi�ed). It is
�tting, then, that the use of topology is so widespread, since de�ning what
can be experimentally distinguished is a fundamental aspect of science.

The aim of this paper is to lay down a framework that formalizes this
insight. We �rst de�ne experimental observations as statements paired
with an experimental test that is able to verify them. We then study
their properties under logical operations and conclude that they are only
closed under �nite conjunction and countable disjunction. Next, we de�ne
experimental distinguishability and show, as our �rst main result, that
any set of objects that are experimentally distinguishable is a Hausdor�,
second-countable topological space, where the topology is formally de�ned
in terms of the observations themselves. Last, we de�ne experimental
relationships between experimentally distinguishable objects and show, as
our second main result, that experimental relationships are represented by
continuous functions and are themselves experimentally distinguishable.

2. Experimental Observations

In science, a statement can be accepted as true only if there exists a
way to experimentally verify it. To capture this notion we introduce the
following de�nitions.

De�nition 2.1. A statement s is a declarative sentence that is either true
or false, as in classical logic.

De�nition 2.2. An experimental test e is a repeatable procedure (i.e.,
it can be restarted and stopped an arbitrary number of times) which
may be successful, in which case it terminates in �nite time, or may be
unsuccessful, in which case it may or may not terminate.1

De�nition 2.3. An experimental observation o is a tuple Ls, eM consisting
of a statement s and an experimental test e such that the statement is

1In line with philosophical tradition (see [4], [7]), we can de�ne this experimental
test:

(1) Find a swan.
(2) If black, terminate successfully.
(3) Go to step 1.
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true if and only if the experimental test is successful. The experimental
observation is veri�ed if the statement is true.

3. Algebra of Experimental Observations

We now want to understand how the standard Boolean algebra de�ned
on statements carries over to experimental observations.

Remark 3.1. Experimental observations are not closed under negation.
The existence of an experimental test to verify a statement does not imply
the existence of an experimental test to verify its negation.2

De�nition 3.2. The conjunction or logical AND of a �nite collection of
experimental observations {oi}ni=1 = {Lsi, eiM}ni=1 is the experimental ob-

servation
n∧

i=1

oi = Ls, eM where s = n∧
i=1

si is the conjunction of the respective

statements and e = e∧({ei}ni=1) is the experimental test that successfully
terminates if and only if all {ei}ni=1 successfully terminate.

Proof. To show that the conjunction is well de�ned, it su�ces to show
that we can construct a suitable experimental test. Let e∧ = e∧({ei}ni=1)
be the experimental procedure de�ned as follows:

(1) For each i = 1, . . . , n run the test ei.
(2) If all tests ei terminate successfully, then terminate successfully.

This experimental procedure terminates successfully if and only if all ei
terminate successfully. It will do so in �nite time as each of the �nitely
many ei succeeds in �nite time. Therefore, e∧({ei}ni=1) is an experimental
test that is successful if and only if all statements {si}ni=1 are true. So
n∧

i=1

oi = L n∧
i=1

si, e∧(ei)M is an experimental observation. �

Remark 3.3. Conjunction cannot be extended to a countable collection
since veri�cation would require in�nite time.

De�nition 3.4. The disjunction or logical OR of a countable (�nite or
in�nite) collection of experimental observations {oi}∞i=1 = {Lsi, eiM}∞i=1 is

the experimental observation
∞∨
i=1

oi = Ls, eM where s = ∞∨
i=1

si is the disjunc-

tion of the respective statements and e = e∨({ei}∞i=1) is the experimental
test that successfully terminates if and only if at least one experimental
test in {ei}∞i=1 successfully terminates.

2Continuing the example, �nding a black swan constitutes proof that black swans
exist, while not �nding any black swans does not constitute proof that black swans do
not exist.
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Proof. As before, it su�ces to show that we can construct a suitable
experimental test. Let e∨ = e∨({ei}∞i=1) be the experimental procedure
de�ned as follows:

(1) Initialize n to 1.
(2) For each i = 1, . . . , n,

(a) run the test ei for n seconds;
(b) if ei terminates successfully, then terminate successfully.

(3) Increment n and go to step 2.

Suppose there exists an i ∈ Z+ such that ei will terminate successfully.
Then the above procedure will eventually run that test for su�cient time
for it to terminate successfully. It will do so in �nite time as it will have
run �nitely many tests �nitely many times each for a �nite amount of
time. Therefore, e∨({ei}∞i=1) is an experimental test that is successful if

and only if at least one statement in {si}∞i=1 is successful. So
∞∨
i=1

oi =

L ∞∨
i=1

si, e∨({ei}∞i=1)M is an experimental observation. �

Taken together, �nite conjunction and countable disjunction form the
algebra of experimental observations. We also introduce the following
special case, which will be useful later.

De�nition 3.5. Any experimental observation whose statement is a con-
tradiction is also called a contradiction and is noted by ⊥.

De�nition 3.6. Two experimental observations o1 and o2 are said to be
incompatible if the conjunction o1 ∧ o2 is a contradiction.

4. Experimental Domain

We now want to characterize the sets of observations for which it is
feasible to verify experimentally all true statements.

De�nition 4.1. An experimental domain is a set of observations closed
under �nite conjunction and countable disjunction, such that all observa-
tions can be tested in in�nite time.

Remark 4.2. We do allow in�nite time for the veri�cation of a domain
with the understanding that some domains will only be partially veri�ed
in �nite time. As we have, so to speak, only one in�nity to spend, we
spend it here to maximize its utility.

At this point, the similarities between this mathematical structure and
topologies are starting to emerge. In analogy to the latter, we de�ne the
following.
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De�nition 4.3. A subbasis of an experimental domain is any subset that
can generate all others via �nite conjunction and countable disjunction.
A basis of an experimental domain is any subset that can generate all
others by countable disjunction.

Remark 4.4. As for topologies, given a subbasis one can generate a
basis by taking all �nite conjunctions. Any in�nite subbasis will generate
a basis of the same cardinality.

Proposition 4.5. Let D be an experimental domain. Then there exists
a countable basis (equivalently, subbasis) B of D.

Proof. If there exists a countable basis B, then, given in�nite time, one
can test all observations in B. Given which observations of the basis are
veri�ed, one can deduce which other observations in D are veri�ed (again
using in�nite time) by computing the appropriate disjunctions.

If there does not exist a countable basis, then, by de�nition, there does
not exist a sequence of experimental observations in D from which one
can deduce all other observations in D. Hence, it is impossible to test all
members of D. �

5. Experimental Distinguishability

We now turn our attention to a more speci�c case. We want to char-
acterize an experimental domain whose purpose is to identify an element
among a set of possibilities.

De�nition 5.1. An experimental identi�cation domain is the triplet
(DX , X, x) where

• X is the set of possibilities and satis�es |X| > 1;
• x is the element to identify among the possibilities, and therefore

x ∈ X;
• DX is an experimental domain containing all possible experimen-
tal observations of the form o = Lx ∈ U, e∈(U)M where U ⊆ X is a
set of possibilities and e∈(U) is an experimental test that succeeds
if and only if x ∈ U .

Any subset U ⊆ X for which such an observation exists is said to be a
veri�able set.

Remark 5.2. Any scienti�c measurement can be formulated as an obser-
vation in the form above. For example, �the mass of the electron is 510,999
± 0.5 eV � places the value within the open set U = (510, 998.5, 510, 999.5).

Lemma 5.3. Let U1, U2, ..., Un, ... be a countably in�nite sequence of ver-

i�able sets. The �nite intersection
n∩

i=1

Ui and the countable union
∞∪
i=1

Ui

are veri�able sets.
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Proof. We show that the �nite intersection of veri�able sets is a veri�able
set. Let U1, U2, ..., Un ⊆ X be n veri�able sets. For each Ui, there exists an
experimental observation oi = Lx ∈ Ui, e∈(Ui)M. Consider the �nite con-

junction o =
n∧

i=1

oi = L n∧
i=1

x ∈ Ui, e∧(e∈(Ui))M = Lx ∈
n∩

i=1

Ui, e∈(
n∩

i=1

Ui)M
which is an experimental observation. Thus,

n∩
i=1

Ui is a veri�able set.

We show that the countable union of veri�able sets is a veri�able set.
Let U1, U2, ..., Un, ... ⊆ X be an in�nite sequence of veri�able sets. For
each Ui, there exists an experimental observation oi = Lx ∈ Ui, e∈(Ui)M.
Consider the in�nite disjunction o =

∞∨
i=1

oi = L ∞∨
i=1

x ∈ Ui, e∨(e∈(Ui))M =

Lx ∈
∞∪
i=1

Ui, e∈(
∞∪
i=1

Ui)M which is an experimental observation. Thus,
∞∪
i=1

Ui

is a veri�able set. �
To make sure we have enough experimental observations to tell the

possibilities apart, we introduce the following de�nition.

De�nition 5.4. A set of possibilities X is experimentally distinguishable
if there exists an experimental identi�cation domain (DX , X, x) such that
for any two possibilities x1, x2 ∈ X we can �nd two incompatible exper-
imental observations Lx ∈ U1, e∈(U1)M, Lx ∈ U2, e∈(U2)M ∈ DX such that
xi ∈ Ui for i = 1, 2.

We are now ready to prove the �rst main result of this work.

Theorem 5.5. A set of experimentally distinguishable possibilities X has
a natural Hausdor�, second-countable topology (X,T) with the open sets
given by the veri�able sets of the associated experimental identi�cation
domain (DX , X, x).

Proof. First, from the de�nition, one can see that for all x ∈ X, there
exists a veri�able set U with x ∈ U . Therefore, the union of a (countable)
basis is the veri�able set X. Further, there exist at least two incompati-
ble experimental observations, corresponding to two disjoint sets, so the
empty set is a veri�able set. Now, Lemma 5.3 shows that the collec-
tion T is closed under �nite intersection and countable union. Because
T is determined by an experimental domain, there is a countable basis
of observations which translates to a countable basis of open (veri�able)
sets, so it is second-countable. Lastly, to show it is closed under arbi-
trary union, notice that an arbitrary union may be rewritten as a union
of basis elements, which is then a countable union, and so it remains in
T. That the topology is Hausdor� is immediate from the last part of the
de�nition. �
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Remark 5.6. As any Hausdor�, second-countable topological space has
at most cardinality of the continuum, that is also the greatest cardinality
that a set of experimentally distinguishable objects can have. We can
conclude that sets of mathematical objects, such as all functions from
R to R, that do not satisfy this requirement are not good candidates to
represent scienti�c concepts.

6. Experimental Relationships

We now want to characterize relationships between two experimentally
distinguishable elements. Such relationships can be de�ned either on the
values (i.e., the possibilities) or on the observations (i.e., the experimen-
tal domain). We need to show that both de�nitions lead to the same
mathematical object.

Remark 6.1. Any scienti�c law can be seen as the relationship between
experimentally distinguishable elements. For example, F = ma tells us
that the product of the measurements for mass and acceleration will be
equivalent to a measurement of the force.

De�nition 6.2 (Experimental relationship between possibilities). Let
(DX , X, x) and (DY , Y, y) be two experimental identi�cation domains.
An experimental relationship between possibilities is a map f : X → Y
that can be used within an experimental test.

Proposition 6.3. The experimental relationship f de�ned above is a
continuous function.

Proof. Let oy = Ly ∈ UY , e∈(UY )M ∈ DY . Since f can be used within an
experimental test, consider the following experimental procedure:

(1) Map x to y = f(x).
(2) Run the test e∈(UY ).

It will be successful if and only if y ∈ UY . Since y = f(x), it is successful
if and only if x ∈ f−1(UY ): The procedure is the test e∈(f

−1(UY )) on
x. This means that ox = Lx ∈ f−1(UY ), e∈(f

−1(UY ))M is an experimental
observation and it must be in DX since DX contains all possible experi-
mental observations of that form. It follows that f−1(UY ) is a veri�able
set and must be part of the topology TX . �

De�nition 6.4 (Experimental relationship between observations). Let
(DX , X, x) and (DY , Y, y) be two experimental identi�cation domains.
An experimental relationship between observations is a map g : DY → DX

such that if o ∈ DY is veri�ed, then g(o) ∈ DX must also be veri�ed. To
be consistent, such a relationship must have these properties:
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(1) It is compatible with conjunction and disjunction: For any o1, o2 ∈
Dy, we have g(o1 ∧ o2) = g(o1) ∧ g(o2) and g(o1 ∨ o2) = g(o1) ∨
g(o2).

(2) Contradiction leads to contradiction: g(⊥) = ⊥.
(3) No knowledge leads to no knowledge: If Y is the veri�able set

associated with o ∈ DY , then X is the veri�able set associated
with g(o).

Proposition 6.5. For each experimental relationship g de�ned above.
there exists a unique continuous function f : X → Y such that g(Ly ∈
UY , e∈(UY )M) = Lx ∈ f−1(UY ), e∈(f

−1(UY ))M.
Proof. First, we reformulate g in terms of the open set. We can rede�ne
g : TY → TX to be the map between the veri�able sets corresponding to
the experimental observations. This map has the following properties:

(1) It is compatible with union and intersection; i.e., for any subsets
V1, V2 ⊆ Y , we have g(V1 ∩ V2) = g(V1) ∩ g(V2) and g(V1 ∪ V2) =
g(V1) ∪ g(V2).

(2) g(∅) = ∅.
(3) g(Y ) = X.

Then we construct the unique extension ḡ : σY → σX to the Borel σ-
algebras of X and Y , σX and σY , respectively, such that ḡ|TY

= g and ḡ is
compatible with union, intersection, and complements. Let ḡ(V ) = g(V )
for all open sets V ∈ TY . Let A ∈ σY (not necessarily open) and AC

be its complement. We must have ḡ(AC) = ḡ(A)C = X \ ḡ(A) for ḡ to
be compatible with complements. Recall that all Borel sets in σY and
σX may be written as some combination of unions, intersections, and
complements of open sets. Thus, the construction uniquely determines
what ḡ should output on any Borel set. We need only check that the
output is still a Borel set. But by de�nition of ḡ, the outputs will be
given as unions, intersections, and complements of outputs of g, which
are open sets, and so the image of ḡ is contained in σX . Therefore, ḡ is
well de�ned.

Next, we de�ne ĝ : Y → σX such that ĝ(y) = ḡ({y}). Since Y is Haus-
dor�, every singleton {y} is closed and is therefore a Borel set. Therefore,
ḡ({y}) is well de�ned and so is ĝ(y).

We claim that ĝ(y1)∩ ĝ(y2) = ∅ if and only if y1 ̸= y2 for all y1, y2 ∈ Y
such that ĝ(yi) ̸= ∅ for i = 1, 2. If y1 ̸= y2, we have

ĝ(y1) ∩ ĝ(y2) = ḡ({y1}) ∩ ḡ({y2}) = ḡ({y1} ∩ {y2}) = ḡ(∅) = ∅.

Conversely, if y1 = y2, we have

ĝ(y1) ∩ ĝ(y2) = ĝ(y1) ∩ ĝ(y1) = ĝ(y1) ̸= ∅.
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We are now ready to de�ne f : X → Y such that f(x) = y if and only
if x ∈ ĝ(y). Since g(Y ) = X, there exists y ∈ Y such that x ∈ ĝ(y). By
the preceding claim, this y is unique. Hence, f : X → Y is well de�ned.
Note that no arbitrary choices were made that led to the construction of
f , which is therefore determined uniquely by g.

Now we show that g = f−1|TY
. Let V ∈ TY . We want to show

f−1(V ) = g(V ). Let x ∈ f−1(V ). Then for some y ∈ V we have f(x) = y.
By construction of f , x ∈ ĝ(y). Since {y} ⊂ V , ĝ(y) ⊂ g(V ), so x ∈ g(V )
and f−1(V ) ⊆ g(V ). Conversely, let x ∈ g(V ) = ḡ(V ). Then for some
y ∈ V , we have x ∈ ḡ({y}) ⊂ ḡ(V ). But then by de�nition we have
f(x) = y, so x ∈ f−1(V ) and f−1(V ) ⊇ g(V ). Hence, f−1(V ) = g(V ) for
all V ∈ TY and, therefore, f−1|TY

= g.
Lastly, we claim f is continuous. It is so since g = f−1|TY

takes open
sets to open sets. �

We can now state the second main result of this work.

Theorem 6.6. An experimental relationship between two sets X and Y
of experimentally distinguishable possibilities is a continuous function f :
X → Y between the respective natural topologies (X,TX) and (Y,TY ).

Proof. As we saw in the previous results, both de�nitions led to ex-
perimental relationships being fully characterized by a continuous func-
tion. �
Remark 6.7. This result gives a formal justi�cation as to why contin-
uous functions are prevalent in science in general and in physics in par-
ticular. As topologies capture experimental distinguishability, continuous
functions preserve it.

7. Distinguishability of Experimental Relationships

To conclude, we want to make sure that experimental relationships
are themselves experimentally distinguishable. To do so it su�ces to
show that the set of continuous functions between two Hausdor�, second-
countable topological spaces can be given a topology that is Hausdor�
and second-countable.

De�nition 7.1. Let X and Y be two topological spaces. Let C(X,Y )
denote the set of all continuous functions from X to Y . Let BX and
BY be two bases for X and Y , respectively. The basis-to-basis topology
T(C(X,Y ),BX ,BY ) on C(X,Y ) with respect to the basis BX and BY is
the topology generated by all sets of the form

V (UX , UY ) = {f ∈ C(X,Y ) : f(UX) ⊂ UY },
where UX ∈ BX and UY ∈ BY .
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Proof. The collection T(C(X,Y ),BX ,BY ) is de�ned to be the topology
generated by the sets V (UX , UY ), so it contains the empty set and is
closed under arbitrary union and �nite intersection by de�nition. To see
why these sets contain every continuous function, let f ∈ C(X,Y ). Then
for any UY ∈ BY , we can �nd some UX ∈ BX such that UX ⊆ f−1(UY ).
Then f ∈ V (UX , UY ). �
Proposition 7.2. Let X and Y be two Hausdor� and second-countable
topological spaces. Let C(X,Y ) denote the set of all continuous functions
from X to Y . Let BX and BY be two countable bases for X and Y ,
respectively. The basis-to-basis topology T(C(X,Y ),BX ,BY ) on C(X,Y )
with respect to the bases BX and BY is Hausdor� and second-countable.

Proof. First, we show that T(C(X,Y ),BX ,BY ) is second-countable. We
note that the subbasis {V (UX , UY ) |UX ∈ BX , UY ∈ BY } is countable
since BX and BY are countable and so will be the bases which it generates.
This means T(C(X,Y ),BX ,BY ) is second-countable.

Next, we show that T(C(X,Y ),BX ,BY ) is Hausdor�. Let f, g : X → Y
be two distinct continuous functions. Then for some x ∈ X, we have
f(x) ̸= g(x). Pick V1 and V2 disjoint open subsets of Y with f(x) ∈ V1

and g(x) ∈ V2. We may assume (possibly by shrinking V1 or V2) that both
are basis elements for the topology of Y . Let U = f−1(V1)∩g−1(V2). Then
U is an open neighborhood of x. We may assume again that U is a basis
element for the topology on X by shrinking it if necessary. Now, let T1

be the (sub-)basis element for the basis-to-basis topology corresponding
to U and V1. By construction, f ∈ T1. Similarly, let T2 be the basis
element for the basis-to-basis topology corresponding to U and V2 and
containing g. Since V1 and V2 are disjoint, so are T1 and T2. Therefore,
T(C(X,Y ),BX ,BY ) is Hausdor�. �
Remark 7.3. Note that the basis-to-basis topology is not in general equal
to the open-open topology. The former may depend on the choice of bases
BX and BY , while the latter is uniquely de�ned by the topologies of X
and Y .

As experimental relationships are themselves distinguishable, we can
recursively form experimental relationships between experimental rela-
tionships leading to functions of arbitrary order while remaining within
the de�nitions provided. The framework is therefore closed.

8. Conclusion

What emerges from this work is that the primary application of topol-
ogy in science is experimental distinguishability: its role is to keep track of
what can be distinguished through experimentation. The importance of
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continuous functions in science stems from requiring that experimental re-
lationships be consistent with experimental distinguishability. Therefore,
it is not that the deterministic evolution of a physical system happens to
be continuous: it must be.

In light of this work, the e�ectiveness of mathematics in the natural
sciences is perhaps not so unreasonable. We hope that the methods and
results shown here can provide a more solid foundation to formalize ex-
perimental sciences.3

This table sums up the relationships established between mathematical
and scienti�c concepts.

Math/Topology Science/Physics
Hausdor�, 2nd-count-
able space

Space of experimentally distinguishable ele-
ments whose points are the possible values
and whose open sets represent the experi-
mentally attainable levels of precision.

Open set Veri�able set. We can verify experimentally
that an element is within the set.

Closed set Refutable set. We can verify experimentally
that an element is not in the set.

Basis A collection of veri�able sets that can be
used to distinguish an element.

Continuous function An experimental relationship between two
sets of experimentally distinguishable el-
ements which must preserve distinguish-
ability.

Homeomorphism A perfect equivalence between spaces of ex-
perimentally distinguishable elements.

Table 1. Topology-to-physics dictionary.

3For the latest developments in our e�ort to provide a more solid mathematical
foundation to experimental sciences, see [2].
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