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HOMOLOGICALLY EQUIVALENT

DISCRETE MORSE FUNCTIONS

MICHAEL AGIORGOUSIS, BRIAN GREEN, ALEX ONDERDONK, KIM RICH,
AND NICHOLAS A. SCOVILLE

Abstract. A theory of homological equivalence of discrete Morse
functions is developed in this paper, extending the work of R. Ay-
ala, L. M. Fernández, D. Fernández-Ternero, and J. A. Vilches
[Discrete Morse theory on graphs, Topology Appl. 156 (2009), no.
18, 3091�3100] and Ayala, Fernández, and J. A. Vilches [Charac-
terizing equivalent discrete Morse functions, Bull. Braz. Math.
Soc. (N.S.) 40 (2009), no. 2, 225�235]. This is accomplished by
de�ning the homological sequence associated with a discrete Morse
function on any �nite simplicial complex and developing its basic
properties. These properties allow us to show that certain homo-
logical sequences may be viewed as lattice walks satisfying param-
eters. We count the number of discrete Morse functions up to
homological equivalence on all collapsible 2-dimensional complexes
by constructing discrete Morse functions inducing the desired se-
quence. The paper concludes with an example to illustrate our
construction.

1. Introduction

Discrete Morse theory was invented by Robin Forman [6] as an analogue
of �smooth� Morse theory popularized by J. Milnor [10]. Many classical
results in Morse theory, such as the Morse inequalities, carry over into
the discrete setting [8]. Applications of discrete Morse theory are vast,
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ranging from applications in con�guration spaces [11] to computer science
search problems [7].

Let f and g be two discrete Morse functions de�ned on a 1-dimensional
simplicial complex, i.e., a graph. Inspired by Liviu I. Nicolaescu [12], R.
Ayala et al. [1] study the homological sequence of a discrete Morse func-
tion by introducing the notion of f and g being homologically equivalent,
and they count the number of excellent discrete Morse functions on all
graphs [5]. The authors continue their study of homological sequences in
[3] and [4], where in the latter paper they de�ne the homological sequence
on 2-dimensional simplicial complexes. We continue their work in this pa-
per by de�ning the homological sequence induced by an excellent discrete
Morse function for all �nite simplicial complexes. We are then able to
prove in Theorem 3.4 that the homological sequence of any excellent dis-
crete Morse function exhibits the same kind of behavior as Ayala et al.
prove in the 1- and 2-dimensional case. From the properties we prove in
Theorem 3.4, it is then immediate that an upper bound for the number
of excellent discrete Morse functions, with m = 2k + 1 critical values, on
a given collapsible complex of dimension n is the number of lattice walks
on Zn of length 2k that start and end at (1, 0, 0, . . . , 0) with each value
(a1, a2, . . . , an) in the walk satisfying ai ≥ 0 for all 2 ≤ i ≤ n and a1 ≥ 1.
In [12], Nicolaescu proves that for n = 2, the number of such walks is

given by CkCk+1 where Ck = 1
k+1

(
2k
k

)
is the kth Catalan number. In fact,

Nicolaescu derives this computation while counting the number of smooth
Morse functions up to homological equivalence on S2. We develop an al-
ternative formula for this value in Proposition 4.1. We give a construction
in Theorem 4.3 to show that when ∆ is a collapsible 2-dimensional sim-
plicial complex, we may construct CkCk+1 such discrete Morse functions.
Our paper concludes with an example of the construction in Example 4.4.

2. Preliminaries

Let [n] = {1, 2, 3, . . . , n}. An abstract simplicial complex ∆ on [n] is a
collection of nonempty subsets of [n] such that

(1) if σ ∈ ∆ and τ ⊆ σ, then τ ∈ ∆;
(2) {i} ∈ ∆ for every i ∈ [n].

An element σ ∈ ∆ of cardinality i + 1 is called an i-dimensional face or
an i-face of ∆. A 0-face is sometimes called a vertex. If σ, τ ∈ ∆ with
τ ⊆ σ, then σ is a face of τ and τ is a coface of σ. The dimension of
∆, denoted dim(∆), is the maximum of the dimensions of all its faces.
We use σ(i) to denote a simplicial complex of dimension i, and we write
τ < σ(i) to denote any subcomplex of σ of dimension strictly less than i.
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De�nition 2.1. A discrete Morse function f on ∆ is a function f : ∆→ R
such that for every p-simplex σ ∈ ∆, we have

|{τ (p−1) < σ : f(τ) ≥ f(σ)}| ≤ 1

and
|{τ (p+1) > σ : f(τ) ≤ f(σ)}| ≤ 1.

A p-simplex σ ∈ ∆ is said to be critical with respect to a discrete Morse
function f if

|{τ (p−1) < σ : f(τ) ≥ f(σ)}| = 0

and
|{τ (p+1) > σ : f(τ) ≤ f(σ)}| = 0.

Example 2.2. The 2-dimensional simplicial complex is labeled with dis-
crete Morse function f . The critical vertices are f−1(0), f−1(2), and
f−1(3), while the critical edges are f−1(5), f−1(6), f−1(7), and f−1(10).
The 2-simplex with value 8 is not critical, while the 2-simplex with value
11 is critical.
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Figure 1. A discrete Morse function on a 2-dimensional
complex.

We say that a discrete Morse function f is excellent if the critical values
of f satisfy c0 < c1 < ... < cm−1, i.e., all critical values of f are distinct.

Let c ∈ R. The level subcomplex ∆(c) is the subcomplex of ∆ consisting
of all simplices τ with f(τ) ≤ c as well as their faces, i.e.,

∆(c) =
⋃

f(τ)≤c

⋃
σ≤τ

σ.

For each critical value c0, c1, . . . , cm−1 of f , we are interested in study-
ing the behavior of the Betti numbers of the level subcomplexes ∆(c0) ⊂
∆(c1) ⊂ . . . ⊂ ∆(cm−1). We review simplicial homology and Betti num-
bers below.
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2.1. Homological Sequences.

We brie�y recall the theory of simplicial homology. Since we are only
interested in the Betti numbers, we use coe�cients in R. Let ∆ be a
simplicial complex on [n]. Denote by Fi(∆) the set of i-dimensional faces
of ∆. Let σ ∈ Fi(∆). Then to each σ, we associate the symbol eσ to
represent a basis element in the vector space k|Fi(∆)| generated by all the
elements of Fi(∆). The boundary operators ∂i : k

|Fi(∆)| → k|Fi−1(∆)| are
de�ned as follows: Let σ ∈ Fi(∆) and de�ne ∂i(eσ) =

∑
j∈σ

sgn(j, σ)eσ−j

where sgn(j, σ) = (−1)i−1 if j is the ith element of σ when the ele-
ments of σ are listed in increasing order. Then im(∂i+1) ⊆ ker(∂i+1),
and we de�ne the ith (unreduced) homology of ∆ to be the vector space
Hi(∆) = ker(∂i)/im(∂i+1) = knul(∂i)−rank(∂i+1). The ith Betti number of
∆ is de�ned to be bi(∆) = nul(∂i) − rank(∂i+1). Clearly, bj(∆) = 0 for
j > n.

Now let f : ∆ → R be an excellent discrete Morse function on ∆.
To each level subcomplex ∆(ci), we consider the Betti numbers bi(∆(ci)).

The homological sequence of f is given by the n+1 maps Bf0 , B
f
1 , . . . , B

f
n :

{0, 1, . . . ,m−1} → N∪{0} de�ned by Bfk (i) = bk(∆(ci)) for all 0 ≤ k ≤ n
and 0 ≤ i ≤ m − 1. We usually write Bk(i) for Bfk (i) when the discrete
Morse function f is clear from the context.

Example 2.3. Consider the discrete Morse function f in Example 2.2.
This is an excellent discrete Morse function with critical values 0, 2, 3, 5, 6,
7, 10, and 11. To �nd the homological sequence of f , we list the Betti
numbers of ∆(0),∆(2),∆(3),∆(5),∆(6),∆(7),∆(10), and ∆(11). The
homological sequence is given in the following table.

B0 : 1 2 3 2 1 1 1 1
B1 : 0 0 0 0 0 1 2 1
B2 : 0 0 0 0 0 0 0 0

Notice that only one value changes when moving from column to col-
umn and that the last column is the homology of the original simplex ∆
even though ∆ 6= ∆(11). These observations and others are true of the
homological sequence of any excellent discrete Morse function. We prove
this in Theorem 3.4.

Two excellent discrete Morse functions f, g : ∆ → R with m critical

values are homologically equivalent if Bfk (i) = Bgk(i) for all 0 ≤ k ≤
m − 1 and 0 ≤ i. Homologically equivalent discrete Morse functions are
�rst introduced and studied in [1]. When ∆ is a 1-dimensional simplicial
complex, the authors show the following.
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Proposition 2.4 ([1]). If f is an excellent discrete Morse function on
a 1-dimensional simplicial complex, then the homological sequence of f
satis�es |B0(i + 1) − B0(i)| = 0, 1 and B1(i + 1) − B1(i) = 0, 1. In
addition, for all i = 0, 1, . . . ,m− 2, exactly one of the following holds:

(1) B0(i) = B0(i+ 1);
(2) B1(i) = B1(i+ 1).

In Theorem 3.4, we generalize this result to the homological sequence
of an excellent discrete Morse function on any �nite simplicial complex.

3. Homological Sequences

In order to generalize Proposition 2.4, the following lemmas are re-
quired, the �rst a classical result in discrete Morse theory [6] and the
second a well-known fact about homology.

Lemma 3.1. [6, Theorem 3.3] If a < b are real numbers such that [a, b]
contains no critical values of f , then bi(∆(a)) = bi(∆(b)) for all integers
i ≥ 0.

Lemma 3.2. Let σp be a p-dimensional simplex such that σp 6∈ ∆ and
∆ ∪ σp is a simplicial complex. Write ∆ = ∆ ∪ σp. For every integer
i ≥ 0, exactly one of the following holds:

(1) bp(∆)− bp(∆) = 1 and bp−1(∆)− bp−1(∆) = 0;

(2) bp−1(∆)− bp−1(∆) = −1 and bp(∆)− bp(∆) = 0.

Furthermore, bd(∆) = bd(∆) for all d 6= p, p− 1.

Lemma 3.3. Let ∆ be a simplicial complex with excellent discrete Morse
function f and suppose that f has global minimum a. Then there is a
unique 0-critical simplex σ such that f(σ) = a.

Proof. By Lemma 3.1, ∆(x) = ∅ for all x < a. Since f is excellent, there
exists a unique simplex σ such that f(σ) = a. Thus, ∆(a) = {σ} and
|∆(a)|−|∆(x)| = 1 so that σ must be a 0-dimensional critical simplex. �

The following result can be interpreted as saying that the homological
sequence of any excellent discrete Morse function is �well behaved� in the
sense that only one Betti number can change for each subsequent level
subcomplex by a value of ±1.

Theorem 3.4. Let f be an excellent discrete Morse function on a
connected n-dimensional simplicial complex ∆ withm critical values c0, c1,
. . . , cm−1. Then each of the following holds:

(1) B0(0) = B0(m− 1) = 1 and Bd(0) = 0 for all d ∈ Z≥1.
(2) For all 0 ≤ i < m − 1, |Bd(i + 1) − Bd(i)| = 0 or 1 whenever

0 ≤ d ≤ n and Bd(i) = 0 whenever d ≥ n+ 1.



288 M. AGIORGOUSIS ET AL.

(3) Bd(m− 1) = bd(∆).
(4) For each i = 0, 1, . . . ,m− 2, either

(a) Bp−1(i) = Bp−1(i+ 1)
or
(b) Bp(i) = Bp(i+ 1)
where p = dim(f−1(ci)).
Furthermore, Bd(i) = Bd(i+1) for any d 6= p, p−1 and 1 ≤ d ≤ n.

Proof. We proceed in order. For (1), choose y ∈ N such that ∆(cm−1 +
y) = ∆. By Lemma 3.1, b0(∆cm−1

) = b0(∆(cm−1 + y)) = b0(∆). Since ∆
is connected, b0(∆(cm−1)) = B0(m− 1) = 1. By Lemma 3.3, ∆(0) = σ0.
Thus, Bd(0) = 0 for all d ∈ Z≥1. This proves the �rst assertion.

For (2), we note that by Lemma 3.1, bd(∆(ci)) = bd(∆(x)) for any x
∈ [ci, ci+1). Since f is excellent, there exists ε > 0 such that ∆(ci+1) =
∆(ci+1 − ε) ∪ σp where σp is a critical p-simplex such that f(σp) = ci+1.
We now apply Lemma 3.2 for each of the following cases: if p = d, then
Bd(i + 1) − Bd(i) = 0 or 1. If p = d + 1, then Bd(i + 1) − B(i) = −1 or
0. Otherwise, Bd(i+ 1)−Bd(i) = 0. This proves (2).

For (3), observe that m− 1 is the maximum critical value. By Lemma
3.1, Bd is constant for all values x > cm−1. Since there is a y ∈ N such
that ∆(cm−1 + y) = ∆, we see that Bd(m− 1) = bd(∆).

Finally, we apply Lemma 3.1 to see that bd(∆(ci)) = bd(∆(x)) for all
x ∈ [ci, ci+1). Since f is excellent, there exists ε > 0 such that ∆(ci+1) =
∆(ci+1 − ε) ∪ σp as in the proof of (2). Observe that, by Lemma 3.2,
the addition of a p-dimensional simplex will change either Bp or Bp−1,
leaving all other values �xed. �

4. Counting Discrete Morse Functions

Let f be an excellent discrete Morse function on ∆. If ∆ is 1-dimensional
and collapsible (i.e., a tree), then [1, Theorem 6.1] shows that the number
of homological sequences with m = 2k + 1 critical values is given by the
kth Catalan number. To see this, observe that by Theorem 3.4, we have
that B0(i+ 1)−B0(i) = ±1 and that Bj = 0 for all j ≥ 2. Furthermore,
B0(0) = B0(m − 1) = 1 so that B0 is a walk in Z+ starting and ending
at 1 with length m − 1 = 2k with step size ±1. As pointed out in [1, p.
3096], this value is known [9] to be precisely the kth Catalan number.

In this section, we wish to extend these results by investigating the
case where ∆ is a 2-dimensional collapsible, connected simplicial complex.
Indeed, suppose ∆ is a collapsible, connected 2-dimensional simplicial
complex, and let f : ∆→ R be an excellent discrete Morse function with
m = 1 + 2k critical values. We associate a lattice walk with the induced
homological sequence of f by considering the walk {(Bd(0), Bd(1))}m−1

d=0 .
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By Theorem 3.4(1), B0(0) = 1 and B1(0) = 0, so the walk begins at (1, 0).
By (1) and (3), B0(m − 1) = 1 and B1(m − 1) = b1(∆) = 0 since ∆ is
collapsible; hence, the walk ends at (1, 0). By (2) and (4), each subsequent
value can change by ±1 in exactly one coordinate, so that this is a lattice
walk of step size ±1. Since B0(i) > 0 and B1(i) ≥ 1 for all i, we obtain
a lattice walk of length 2k in Z2 starting and ending at (1, 0) with �rst
coordinate positive and second coordinate nonnegative. The number of
such walks has been computed explicitly by Nicolaescu [12] to be CkCk+1,
the product of consecutive Catalan numbers. We obtain an alternative
formula for this value.

Proposition 4.1. Let f be an excellent discrete Morse function on a 2-
dimensional collapsible complex with m = 2k+1 critical values. An upper
bound for the number of homology equivalence classes of excellent discrete
Morse functions is

k∑
`=0

(
m− 1

2`

)
Ck−`C`.

Proof. By Theorem 3.4, B1(0) = B1(m−1) = 0 so that each time a value
in the B1 increases by 1, it must also decrease by 1. Hence, the number
of times B1 changes (increases or decreases) is even, say B1 changes 2`
times. Since B1(0) = 0, there are m − 1 positions to place 2` changes
in B1, giving us

(
m−1

2`

)
. For any �xed choice, the B1 sequence exhibits

a walk in Z≥0 starting and ending at 0 with ` steps of size ±1. Since
there are exactly C` such walks, there are

(
m−1

2`

)
C` choices for position

and value of the B1 sequence.
Now recall that when B1 changes, B0 remains constant. Thus, there

are m− 2` = 2(k − l) + 1 available inputs in the B0 sequence for a total
of Ck−` arrangements for B0.

Thus, the total number of possible sequences on m critical values is

k∑
`=0

(
m− 1

2`

)
Ck−`C`,

which is what we desired to show. �

Remark 4.2. Note that Proposition 4.1 then implies the well-known fact

that if m = 2k + 1, then
k∑̀
=0

(
m−1

2`

)
Ck−`C` = CkCk+1.

We now show that the above upper bound is the actual number of
excellent discrete Morse functions on a collapsible 2-dimensional simplicial
complex up to homological equivalence. As noted, for m = 2k+ 1 critical
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values, this yields CkCk+1 classes. In [12], Nicolaescu computes this value
to count the number of smooth Morse functions on the 2-sphere S2 up to
homological equivalence. Hence, the theorem below provides another nice
symmetry between smooth and discrete Morse theory. In [4, Theorem 5.1],
Ayala et al. give a sketch of a proof which counts the number of excellent
discrete Morse functions on all compact orientable surfaces. Below we give
the full details of an alternative proof using the construction of excellent
discrete Morse functions on any 1-dimensional simplicial complex found in
[5, Theorem 4.3]. Let ∆1 := {σ ∈ ∆ : dim(σ) ≤ 1} denote the 1-skeleton
of ∆. The technical hypothesis about ∆1 is to ensure that we can apply
this construction to obtain any homological sequence. (See introductory
remarks of the proof of Theorem 4.3 [5].)

Theorem 4.3. Let ∆ be a collapsible 2-dimensional simplicial complex
such that ∆1 contains at least one vertex of degree 1 or that ∆1 is a
non-trivial bridgeless graph. Then the number of excellent discrete Morse
functions up to homological equivalence with m = 2k+ 1 critical elements
on ∆ is CkCk+1.

Proof. By Remark 4.2, we know that the number of excellent discrete
Morse functions on ∆ with m = 2k+1 critical values is bounded above by
CkCk+1. Hence, given a homological sequence, we construct an excellent
discrete Morse function with m = 2k + 1 critical values which realizes
this sequence. As observed in the proof of Proposition 4.1, for a �xed
0 ≤ ` ≤ k, there are 2` nonzero entries in the row B1. By Theorem 3.4,
any such homological sequence on ∆ is of the form

B0: n0 n1 . . . nt1 nt1 nt1+1 . . .
nti nti . . . nt2` nt2` nt2`+1

. . . 1

B1: 0 0 . . . 0 1 1 . . .
s± 1 s . . . 1 0 0 . . . 0.

Homological sequence A

We will construct an excellent discrete Morse function g on ∆ with
homological sequence A. This is accomplished by �rst constructing an
excellent discrete Morse function on ∆1, the 1-skeleton of ∆.

Begin by subdividing ∆ as necessary to obtain enough simplices. Re-
move the 2-simplices of ∆ to obtain ∆1. The resulting skeleton is a graph
with b := b1(∆1) independent cycles. By [4, Theorem 5.1] there is an
excellent discrete Morse function f on ∆1 with the following homological
sequence:
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B0: n0 n0 n0 n0 . . . n0 n1 n2 . . .
nt1 nt1 , . . . 1

B1: 0 1 2 3 . . . b− ` b− ` b− ` . . .
b− ` b− `+ 1 . . . b.

Homological sequence B

Homological sequence B is obtained by starting with the homological
sequence A and inserting b− ` cycles after the initial critical value. This
has the e�ect of shifting the B0 sequence of homological sequence A by
b−` entries to the right, and the corresponding B1 value is b−`. Since the
�rst time B1 increases in homological sequence A is at nt1 , homological
sequence B also has B1 increase after nt1 except that it increases from
b−` to b−`+1. Continue in this manner until the �rst time B1 decreases
in homological sequence A.

We de�ne g = f on ∆1. We will next insert the 2-simplices back
into ∆1 and label them so that the sequence on ∆1 is transformed into
homological sequence A on ∆. Since ∆ is collapsible, each 2-simplex
τ ∈ ∆ may be associated with a critical edge bounding τ . Hence, there
is a one-to-one correspondence between the �rst b − ` critical edges and
2-simplices bounding that edge. Call these critical edges e1, e2, . . . , eb−`
and their corresponding 2-simplices d1, d2, . . . , db−`. De�ne g(di) = f(ei)
where 1 ≤ i ≤ b − `. Since f is excellent, the critical edge ei is the only
simplex with value f(ei). Hence, de�ning g(fi) = f(ei) will still yield a
discrete Morse function, but now each of the ei is not critical under the
function g. In addition, each di is non-critical.

Now let tj be the �rst index in homological sequence A such that
B1(tj) − B1(tj+1) = 1. Choose any 2-simplex that has not yet been
labeled and whose boundary is in the current level subcomplex. Label
this simplex so that it has a value greater than the maximum of all values
of the current level subcomplex, but less than the values on f(∆1) that
are not yet in the current level subcomplex. This will ensure that the
2-simplex is critical, so that B1(tj) − B1(tj+1) = 1. Repeat this step as
necessary.

The resulting discrete Morse function g on ∆ will have the given ho-
mological sequence. �

We give an example of the construction in Theorem 4.3.

Example 4.4. Let ∆ be the collapsible 2-dimensional complex given in
Figure 2.
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Figure 2. Collapsible 2-dimensional complex.

We will construct an excellent discrete Morse function on ∆ with the
following homological sequence:

B0 1 2 1 2 2 3 3 2 1 1 1
B1 0 0 0 0 1 1 0 0 0 1 0.

Use the result of [5, Theorem 4.3] to construct an excellent discrete
Morse function f on ∆1 with the following homological sequence:

B0 1 1 1 1 1 1 2 1 2 2 3 2 1 1
B1 0 1 2 3 4 5 5 5 5 6 6 6 6 7.

Such a discrete Morse function is given below.

1 2 3 4

1 6 2 7 4 8

3 9

4

4 10 14 19
18

5 12 16

17

0 1 2 3
4

1
2

4

3 4 18

15

4 5 11 13

Figure 3. Discrete Morse function on ∆1.

Now pick �ve 2-simplices and label them with the maximum value of
their boundary edge value.
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1 2 3 4
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Figure 4. Discrete Morse function with desired homo-
logical sequence.

The remaining two 2-simplices are labeled slightly greater than the
maximum of all the simplices in the current level subcomplex, where the
current level subcomplex is determined by when B1 decreases in our orig-
inal homological sequence. Hence, the discrete Morse function g is given
in Figure 5.
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Figure 5. Discrete Morse function g.
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