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GROWTH SERIES OF CAT(0) CUBICAL COMPLEXES

BORIS OKUN AND RICHARD SCOTT

Abstract. Let X be a CAT(0) cubical complex. The growth
series of X at x is Gx(t) =

∑
y∈V ert(X) td(x,y), where d(x, y)

denotes `1-distance between x and y. If X is cocompact, then
Gx is a rational function of t. In the case when X is the Davis
complex of a right-angled Coxeter group it is a well known that
Gx(t) = 1/fL(−t/(1 + t)), where fL denotes the f -polynomial of
the link L of a vertex of X. We obtain a similar formula for general
cocompact X. We also obtain a simple relation between the growth
series of individual orbits and the f -polynomials of various links.
In particular, we get a simple proof of reciprocity of these series
(Gx(t) = ±Gx(t−1)) for an Eulerian manifold X.

Let X be a CAT(0) cube complex with a cocompact cellular action by
a group G. Denote by d(x, y) the `1-distance between vertices x and y of
X. We consider the following growth series:

Gxy =
∑
z∈Gy

td(x,z)

— the growth series of G-orbit of y as seen from x, and

Gx =
∑
y∈X

td(x,y)

— the full growth series of X as seen from x.
The aim of this paper is to establish relations between these growth

series and the local structure of X and X/G. In order to do this we
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introduce more notation. The f -polynomial of a simplicial complex L is
given by

fL(t) =
∑
σ∈L

tdimσ+1.

Note that we assume that L contains an empty simplex of dimension −1,
so the f -polynomial always has free term 1. For vertices x and y of X,
denote by 2xy the cube spanned by x and y. In other words, 2xy is the
minimal cube containing x and y. Let fxy denote the f -polynomial of the
link of the cube 2xy, and let fx = fxx denote the f -polynomial of the link
of the vertex x. We put fxy = 0 if x and y are not contained in a cube.

A fundamental example of a cocompact CAT(0) cube complex is the
Davis complex of a right-angled Coxeter group. In this case, the group
acts simply transitively on vertices and thus all the growth series are equal,
and we have the following well-known result. (For general Coxeter groups,
this can be found in [6, Theorem 1.25 and Corollary 1.29]. For the right
angled case, it takes the following form.)
Theorem 1. If G is a right-angled Coxeter group and X is its Davis
complex, then

Gx(t)fx
(
−t

1 + t

)
= 1.

In fact, it was proved by the second author in [3] that the same formula
holds if one assumes only that the f -polynomials of all vertices are the
same.
Theorem 2. If the links of all vertices of X have the same f -polynomial,
then

Gx(t)fx
(
−t

1 + t

)
= 1.

Our goal is to generalize this to the case of different links. Since, by
a result of G. A. Niblo and L. D. Reeves [2], CAT(0) cube groups have
an automatic structure, it follows that the growth series Gxy are rational
functions of t computable in terms of the local structure of X. This
computation was carried out by the second author in [4], where it was
used to prove reciprocity of the growth series for Eulerian manifolds. In
this paper we obtain different and much simpler formulas for the growth
series which lead to an easy proof of reciprocity.

Our result is easiest to state when the action is sufficiently free. Define

(1) cxy =
(
−t

1− t2

)d(x,y)
fxy

(
t2

1− t2

)
.

Theorem 3. If the stars of vertices are embedded in X/G, then the
matrices (Gxy) and (cxy) (x, y ∈ X/G) are inverses of each other.
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Note that in this case the matrices are symmetric.
In the general case, two vertices in X/G can span multiple cubes. To

account for this, we modify the coefficients cxy as follows. Let π : X →
X/G denote the natural projection. For x, y ∈ X/G, pick x̄ ∈ π−1(x) and
set

c̄xy =
∑

ȳ∈π−1(y)

cx̄ȳ.

Theorem 4. The matrices (Gxy) and (c̄xy) are inverses of each other:∑
y∈X/G

c̄xyGyz = δxz.

Corollary 5. If X is an n-dimensional Eulerian manifold, then cxy and
Gxy satisfy reciprocity:

cxy(t−1) = (−1)ncxy(t),
Gxy(t−1) = (−1)nGxy(t).

Proof. For a simplicial Eulerian (n − 1)-sphere L, we have the Dehn–
Sommerville relations (see [5, pp. 353–354 ] or [1, p. 271])

fL(t− 1) = (−1)nfL(−t).

A bit of algebra gives the first formula, and the second formula then
follows. �

At this point an attentive reader might wonder how to reconcile our
formula with the one for the Davis complex, where our matrices become
1× 1. We have the following lemma.

Lemma 6. ∑
y∈X

cxy = fx( −t1 + t
).

∑
y∈X/G

c̄xy = fx( −t1 + t
).

Proof. The first statement is true for an n-cube as both sides evaluate to
1

(1+t)n and both sides behave the same under taking unions. The second
statement follows from the first. �

Summing the main formula
∑
y∈X/G c̄xyGyz = δxz over x, or z, or both,

and using the previous lemma give the following.
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Corollary 7.

∑
y∈X/G

fy

(
−t

1 + t

)
Gxy = 1,

∑
y∈X/G

c̄xyGy = 1,

∑
x∈X/G

fx

(
−t

1 + t

)
Gx = #X/G.

So we indeed recover the Davis complex formula.

Our proof of theorems 3 and 4 is based on a different description of the
entries of the inverse of the matrix Gxy. We develop this description in
the next four lemmas before proving the theorems. For each vertex x ∈ X,
define a function hx : X → R[t] by hx(y) = td(x,y). The following lemma
is key in our approach.

Lemma 8. Let x ∈ X, and let S = V ert(St(x)) denote the vertices of
the cubical star of x. Then the characteristic function of {x}, 1x is a
unique linear combination of the functions hy, y ∈ S, over R(t), the field
of rational functions.

Proof. Since X is CAT(0), the hyperplanes near x (corresponding to edges
starting at x) divide X into convex polyhedral regions. Each region R has
a unique vertex r closest to x. Also, r ∈ S. We will refer to the regions as
cones and to the vertices as cone points.

For any z ∈ R and y ∈ S, there exists a geodesic edge path which goes
through r.

d(y, z) = d(y, r) + d(r, z).

Therefore,

hy(z) = td(r,z)hy(r).
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R

x

z

y r

Lemma 8 implies that for a fixed cone the values of all the functions
hy(z) are the same power of t multiple of the corresponding value at the
cone point. It follows that if a linear combination of hy, y ∈ S vanishes at
a cone point, then it vanishes on the whole cone.

Thus, since the cone points are precisely S, it is enough to prove the
special case when X = St(x).

In this case, the S×S matrix of values of h-functions (hy(z)) = (td(y,z))
has 1s on the diagonal and positive powers of t off the diagonal. Its
determinant is a nonzero polynomial, since it evaluates to 1 at t = 0.
Therefore, the matrix is invertible over R(t) and the desired coefficients
are given by the x-row of its inverse. �

Lemma 9. If X = A × B, then the coefficients for X are products of
coefficients for A and B.

Proof. This is immediate from the formula

h(a,b)(x, y) = ha(x)hb(y). �

One of the implications of the proof of Lemma 8 is that it is enough to
understand the case when X = St(x). Note that when X is a star, we do
not need to assume that X is CAT(0).

So assume that X = St(x) and denote the coefficients posited in Lemma
9 by cXxy. This should not cause confusion since we will show in Lemma 11
that they are the same as cxy given by (1). Our proof is based on building
X inductively cube by cube and using the product formula and a certain
inclusion–exclusion formula (see Lemma 10.)

In order to state the inclusion–exclusion formula we introduce more
notation. If A is a sub-complex of X containing x, which is also a star
A = StA(x), then we extend the coefficients cAxy to all of X by setting
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cAxy = 0 for y 6∈ A. Since for y ∈ A the function hy for X restricts to the
function for A, we have∑

y∈X
cAxyhy(z) =

∑
y∈A

cAxyhy(z),

and the resulting function restricts to 1x on A.
The basis of our induction is the following. If X = {x}, then the only

coefficient is 1. For a segment X = [xy], the coefficients are cXxx = 1/(1−t2)
and cXxy = −t/(1− t2):

1x = 1
1− t2hx + −t

1− t2hy.

Lemma 10 (Inclusion–exclusion). If X = St(x) decomposes as X =
A ∪C B, where A, B, and C are subcomplexes of X which are also stars
of x, then

cXxy = cAxy + cBxy − cCxy.

Proof. First consider a special case when A = C × [xz] is the star of the
edge [xz]. We identify C with C × {x}. Then, for a = (c, z) ∈ A− C and
b ∈ B, we can choose a geodesic through c = (c, x) ∈ C and, therefore,

ha(b) = thc(b) hb(a) = thb(c).
Also, from the product formula we have

cAxc = 1
1− t2 c

C
xc cAxa = −t

1− t2 c
C
xc.

It follows that∑
y∈A

cAxyhy(b) =
∑

a∈A−C
cAxyha(b) +

∑
c∈C

cAxyhc(b)

=
∑
c∈C

−t
1− t2 c

C
xcthc(b) +

∑
c∈C

1
1− t2 c

C
xchc(b) =

∑
c∈C

cCxchc(b),∑
b∈B

cBxbhy(a) = t
∑
b∈B

cBxbhb(c) = t1x(c),

and ∑
c∈C

cCxbhb(a) = t
∑
b∈C

cCxbhb(c) = t1x(c).

Therefore,

∑
y∈X

(cAxy+cBxy−cCxy)hy(b) =

∑
y∈A

cAxyhy(b)−
∑
c∈C

cCxchc(b)

+
∑
y∈B

cBxyhy(b)

= 1x(b),
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and

∑
y∈X

(cAxy+cBxy−cCxy)hy(a) =
∑
y∈A

cAxyhy(a)−
[∑
c∈C

cCxchc(a)−
∑
b∈B

cBxbhb(a)
]

= 1x(a) = 0,

since the bracketed differences vanish.
Thus,

∑
y∈X(cAxy + cBxy − cCxy)hy = 1x, and the special case follows from

uniqueness of the coefficients.
The general case now follows by induction. Let X = A ∪C B and

let [xz] be an edge in X. As before, associated with the edge, we have
decomposition of X into the star of [xz] and the rest, which we write as
X = X1 ∪X3 X2, for which the inclusion-exclusion formula holds.

(2) cXxy = cX1
xy + cX2

xy − cX3
xy .

Intersecting this decomposition with the original one gives decompositions
of A = A1∪A3A2, and similarly of B and C. It also gives decompositions of
Xi = Ai∪Ci

Bi. The left hand sides of these six decompositions are proper
subsets of X and we can assume by induction that the inclusion–exclusion
formula holds for them.

cX1
xy = cA1

xy + cB1
xy − cC1

xy

cX2
xy = cA2

xy + cB2
xy − cC2

xy

cX3
xy = cA3

xy + cB3
xy − cC3

xy

cAxy = cA1
xy + cA2

xy − cA3
xy

cBxy = cB1
xy + cB2

xy − cB3
xy

cCxy = cC1
xy + cC2

xy − cC3
xy

Substituting the formulas in the first column into (2) and comparing with
cAxy + cBxy − cCxy using the second column verifies the desired formula for
X = A ∪C B. �

Below are some examples.

x

1
1−t2

−t
1−t2

x
1

(1−t2)2
−t

(1−t2)2

t2

(1−t2)2
−t

(1−t2)2
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x
2

(1−t2)2 − 1
1−t2

−t
(1−t2)2

t2

(1−t2)2

−2t
(1−t2)2 − −t

1−t2

−t
(1−t2)2

t2

(1−t2)2

In fact, we have explicit formulas for the coefficients.

Lemma 11. The coefficient of hy is precisely the cxy introduced before:

cxy =
(
−t

1− t2

)d(x,y)
fxy

(
t2

1− t2

)
.

Proof. By the product formula, this is true if X is a cube and both sides
behave the same under taking unions. �

We are now in position to finish the proof of theorems 3 and 4.

Proof. Since cxy = 0 for x and y not spanning a cube, we have∑
y∈X

cxyhy =
∑

y∈St(x)

cxyhy = 1x.

Since
Gyz =

∑
w∈Gz

hy(w),

we have ∑
y∈X

cxyGyz =
∑
y∈X
w∈Gz

cxyhy(w) =
∑
w∈Gz

1x(w) = δπ(x)π(z).

Since Gxy are G-invariant in both variables, and cxy is invariant under
the diagonal action, we can express this result in terms of X/G, to obtain
theorems 3 and 4. �

Finally, we note that cxx = fx

(
t2

1−t2

)
. Taking t =

√
−1, we obtain the

following strange corollary.

Corollary 12. If the stars of vertices are embedded in X/G, then

tr(cxy(
√
−1)) = χ(X/G).

Thus, the Euler characteristics can be computed from the matrix of the
growth series (Gxy) evaluated at

√
−1.



GROWTH SERIES OF CAT(0) CUBICAL COMPLEXES 303

References
[1] Światosław R. Gal, Real root conjecture fails for five- and higher-dimensional

spheres, Discrete Comput. Geom. 34, (2005), no. 2, 269–284.
[2] G. A. Niblo and L. D. Reeves, The geometry of cube complexes and the complexity

of their fundamental groups, Topology 37 (1998), no. 3, 621–633.
[3] Richard Scott, Growth series for vertex-regular CAT(0) cube complexes, Algebr.

Geom. Topol. 7 (2007), 285–300.
[4] Richard Scott, Eulerian cube complexes and reciprocity, Algebr. Geom. Topol. 14

(2014), no. 6, 3533–3552.
[5] Richard P. Stanley, Enumerative Combinatorics. Volume 1. Cambridge Studies in

Advanced Mathematics, 49. Cambridge: Cambridge University Press, 1997.
[6] Robert Steinberg, Endomorphisms of Linear Algebraic Groups. Memoirs of the

American Mathematical Society, No. 80. Providence, R.I.: American Mathematical
Society, 1968

(Okun) Department of Mathematical Sciences; University of Wisconsin–
Milwaukee; Milwaukee, WI 53211-3029

Email address: okun@uwm.edu

(Scott) Department of Mathematics and Computer Science; Santa Clara
University; Santa Clara, CA 95053

Email address: rscott@scu.edu




