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ON THE NOTION OF TREE-LIKENESS FOR

GENERALIZED CONTINUA

W�ODZIMIERZ J. CHARATONIK, TOMÁS FERNÁNDEZ-BAYORT,
AND ANTONIO QUINTERO

Abstract. A variety of equivalent approaches to tree-likeness is
available in classical continuum theory. In absence of compactness,
some of those equivalences do not hold. In this paper, we compare
the class of generalized continua de�ned as inverse limits of locally
�nite trees with proper bonding maps with the class of those for
which any open cover admits acyclic re�nements. We show that
the latter is precisely the subclass of the former consisting of those
generalized continua with exhausting sequences of tree-like con-
tinua. In addition, we show that locally injective proper maps onto
tree-like generalized continua are homeomorphisms for the second
de�nition but not for the �rst one, which, notwithstanding, is still
re�ected by such maps.

1. Introduction

The proper category is widely accepted as the most convenient frame-
work for the study of the topology of locally compact spaces; in particular,
classes of spaces and maps of interest in continuum theory are extended
to the proper category. Recall that a map f : X → Y is said to be proper
(also termed perfect in the literature) if for any compact subset K ⊂ Y ,
f−1(K) is compact in X. It is well known that proper maps are closed
maps [6, Theorem 3.7.18].
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This paper is focussed on the extension to the proper category of the
well-known class of tree-like continua. These spaces are described as in-
verse limits of sequences of �nite trees. Alternatively, a tree-like contin-
uum X is characterized by the property that all open covers of X admit
acyclic re�nements. See [10, Theorem 2.1].

Passing to the proper category via the inverse limit approach, the au-
thors de�ne in [5] a locally compact metric space to be a tree-like space
if it can be expressed as the limit of an inverse sequence of locally �nite
trees with proper bonding maps. An interesting property of this notion
of tree-likeness is proved in [5, Theorem 4.1]: The tree-likeness of a gen-
eralized continuum is equivalent to the tree-likeness of its Freudenthal
compacti�cation.

In this paper, we compare the de�nition of tree-likeness in [5] with
the de�nition based on the existence of acyclic re�nements for arbitrary
open covers. Similar to the compact setting, this second approach to tree-
likeness can be characterized by purely homotopical properties (theorems
3.1 through 3.4).

Nevertheless, in contrast to the classical continuum theory, the two
notions of tree-likeness are not equivalent in the proper category since
the second approach is strictly stronger than the �rst one (Example 4.3).
We prove that both approaches coincide exactly on the class of those
generalized continua with an exhausting sequence of tree-like continua
(Theorem 4.4).

We �nish the paper by showing that local homeomorphisms (and, more
generally, locally injective proper surjections) onto tree-like generalized
continua are homeomorphisms for the stronger de�nition (Theorem 6.5),
but not for the weaker one (Example 6.2). Nevertheless, the latter is still
re�ected by such maps (Theorem 6.3). These results are extensions to
the proper category of a theorem for continua due to Jo W. Heath [9],
improving an older result by T. Ma¢kowiak [13].

2. Some Preliminaries

Throughout this paper, a continuum (generalized continuum, respec-
tively) is a connected compact (locally compact, respectively) metric
space.

It follows from [6, Theorem 5.1.27] that any generalized continuum
is second countable and σ-compact [6, Corollary 4.1.16 and Exercise
3.8.C(b)]. Moreover, local compactness, together with σ-compactness,
readily implies the existence of exhausting sequences in a generalized con-
tinuum X, that is, increasing sequences of compact subsets Xn ⊂ X with
X = ∪∞

n=1Xn and Xn ⊂ intXn+1.
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Given an exhausting sequence {Xn}n≥1 of the generalized continuum
X, a Freudenthal end of X, ε = (Qn)n≥1, is a decreasing nested sequence
of quasicomponents Qn ⊂ X − intXn. Recall that the quasicomponent
of a point x is de�ned to be the intersection of all open and closed sets
containing x.

Let F(X) denote the set of all Freudenthal ends of X. The set X̂ =
X ∪ F(X) admits a compact metrizable topology, called the Freudenthal

compacti�cation of X, for which the subspace F(X) ⊂ X̂ turns out to
be compact and 0-dimensional. Any proper map f : X → Y between

generalized continua extends to a continuous map f̂ : X̂ → Ŷ with a
continuous restriction f∗ : F(X) → F(Y ); see [2] for details.

3. Spaces with Enough Acyclic Refinements

in the Proper Category

A cover of a space X is termed acyclic if it does not contain cyclic
chains of length ≥ 3. Here, a cyclic chain is a sequence of distinct subsets
of X, V1, . . . , Vn, such that Vi∩Vi+1 ̸= ∅ if 1 ≤ i ≤ n−1 and V1∩Vn ̸= ∅.
We will say that X has enough acyclic re�nements if any open cover of X
admits an acyclic re�nement. Clearly, having enough acyclic re�nements
implies dimX ≤ 1. Hence, by using the one-point compacti�cation, [7,
Theorem 1.11.4] shows that X admits an embedding into R3 as a closed
set. Furthermore, the following theorem (collecting previous results in [4]
and [8]) characterizes in a purely homotopical manner the existence of
enough acyclic covers; compare with [10].

Theorem 3.1. Let X be a 1-dimensional generalized continuum. Then
the following statements are equivalent, where G ranges over the class of
graphs.

(i) Any open cover of X admits a locally �nite countable acyclic re�ne-
ment.

(ii) X has enough acyclic re�nements.
(iii) Any continuous map f : X → G is inessential.
(iv) Any proper map f : X → G is inessential.
(v) Any proper map f : X → G factorizes as a composite of proper maps

X → T → G through a tree T .

Here, by a graph, we mean a 1-dimensional polyhedron, and trees are
graphs with no cycles. We follow the convention of [14], and so graphs and
trees will be assumed to be locally �nite throughout the paper. Notice
that Theorem 3.1(iii) is an extension of the well-known characterization
of tree-like continua due to J. H. Case and R. E. Chamberlin [4, Theorem
1]. Recall that a map f : X → Y is termed inessential if it is homotopic
to a constant map.



308 W. J. CHARATONIK, T. FERNÁNDEZ-BAYORT, AND A. QUINTERO

Proof of Theorem 3.1. Both (i)⇒(ii) and (iii)⇒(iv) are immediate. More-
over, (ii)⇒(iii) appears as part of the proof of [4, Theorem 1], whereas
the equivalence (iv)⇔(v) is proved in [8, Lemma 5].

It remains to check (v)⇒(i). Let U be any open cover of X. By using
the paracompactness, the local compactness, the 1-dimensionality, and
the Lindelö� property of X, we can re�ne U by a countable locally �nite
open cover V = {Vi}i≥1 of order 2 whose elements have compact closure.
In particular, the nerve of V, N = N(V), is a graph and the canonical
barycentric map α : X → N is proper. Therefore, by (v), α factorizes up
to proper homotopy as a composite of proper maps α = h ◦ g : X → T →
N where T is a tree.

Let S = {Sn}i≥1 be the canonical cover of N by the open stars Si =
◦
st

(Vi;N) and W = {Wi}i≥1 be the open cover of T with Wi = h−1(Si).
By [15, p. 126], there exists a subdivision T of T such that the cover U
consisting of the open stars of the vertices of T re�nes W. Notice that U
is acyclic and so is the cover g−1U de�ned by the counterimages by g of
the elements of U . Moreover, g−1U re�nes g−1W = α−1S = V. The last
equality holds since the de�nition of α yields α−1(

◦
st (Vi;N)) = Vi for all

i ≥ 1. �

In [11], it is proved that for ordinary continua, the arbitrary graph G
in Theorem 3.1(iii) (i.e., the Case�Chamberlin theorem) can be replaced
by the wedge of two circles S1∨S1. Next, we improve Theorem 3.1 by the
following addendum, which extends the main result in [11] to generalized
continua.

Theorem 3.2. Under the assumptions of Theorem 3.1, each of the con-
ditions listed there is equivalent to the following one:

(iii′) Any continuous map f : X → S1 ∨ S1 is inessential.

In order to prove Theorem 3.2, we simply modify the proof in [11] to
surmount the fact that non-compact sets of Rn do not have a countable
base of neighbourhoods. For this we use that graphs are ANR.

Proof of Theorem 3.2. Clearly, (ii)⇒(iii′) follows from Theorem 3.1. Con-
versely, assume that there exists an essential map f : X → G for some
graph G. As done in [11], let g : G→ S1 ∨ S1 be a continuous map such
that g∗ : π1(G) → π1(S

1 ∨ S1) is an injective homomorphism. Here we
use [15, Theorem 8.1.11] and the well-known fact that a free group with
a countable base is isomorphic to a subgroup of the free group with two
generators.

We claim that the composite h = g ◦ f : X → S1 ∨ S1 is essential. For
this, embed X as a closed set in R3 and let f ′ : U → G be an extension
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of f to a connected open neighbourhood of X. Here, we use that G is an
ANR.

Assume for a moment that h is inessential. Then by the homotopy
extension property, h extends to an inessential map h′ : W → S1 ∨
S1 where W is an open neighbourhood of X. Let Ω′ be the connected
component of W ∩ U containing X. As both g ◦ f ′ and h′ extend h, we
use that S1 ∨ S1 is an ANR to �nd a connected open neighbourhood of
X, Ω′′ ⊂ Ω′, and a homotopy g ◦ f ′′ ≃ h′′ for the restrictions f ′′ = f ′|Ω′′

and h′′ = h′|Ω′′. Then g∗ ◦ f ′′∗ = h′′∗ : π1(Ω
′′) → π1(S

1 ∨ S1) is the trivial
homomorphism. As g∗ is injective, f ′′∗ is trivial as well. Hence, by [15,
Theorem 2.4.5], f ′′ lifts to the universal covering space ofG, which is a tree
and therefore contractible. Here, we use that Ω′′ is locally path connected.
Thus, f ′′ is inessential, and so is f , which is a contradiction. �

After Theorem 3.2, one may ask for a �universal� in�nite graph to
replace in the proper setting the arbitrary graph in Theorem 3.1(iv) and
(v). This is done in the following theorem where Σ1 denotes the string of
circles in Figure 1.

Figure 1

Theorem 3.3. Under the assumptions of Theorem 3.1, each of the con-
ditions listed there is equivalent to each of the following two:

(iv′) Any proper map f : X → Σ1 factorizes as a composite of proper
maps X → T → Σ1 through a locally �nite tree T .

(v′) Any proper map f : X → Σ1 is inessential.

For the proof of Theorem 3.3, we recall that the choice of a root vertex
v0 ∈ T yields a canonical ordering on the vertex set of a tree T . Namely,
we write w ≤ v if w lies in the unique arc Γv ⊂ T from v0 to v. The
number of edges in Γv is termed the height of v in T .

Proof of Theorem 3.3. Clearly, (ii)⇒(iv′) follows from Theorem 3.1. Since
trees are contractible, (iv′)⇒(v′) is immediate. We will prove (v′)⇒(ii)
by contradiction. By Theorem 3.1, let us assume that g : X → G is an es-
sential map into a graph G. We will reach a contradiction by constructing
an essential proper map f : X → Σ1 as follows.

The classi�cation of the proper homotopy types of graphs in [1] provides
us with a proper homotopy equivalence ψG : G → S(G) where S(G) is a
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�tree of circles,� that is, a tree TS(G) with �nitely many (possibly none)
circles attached at each vertex. Then the composite g′ = ψG ◦ g : X →
S(G) is also essential.

Let r : TS(G) → R≥0 be the proper map which carries each vertex
v ∈ TS(G) to its height and the edges of TS(G) are mapped linearly onto
the corresponding interval. Let S′(G) be the �string of circles� obtained
by attaching at n ∈ R≥0 = TS′(G) as many circles as circles of S(G)
are attached at vertices of height n. The obvious proper extension of r,
r′ : S(G) → S′(G), induces a homeomorphism S(G)/TS(G)

∼= S′(G)/R≥0.
Hence, r′ is an ordinary homotopy equivalence since the quotient maps
S(G) → S(G)/TS(G) and S

′(G) → S′(G)/R≥0 are as well.

Finally, by [1], there is a proper homotopy equivalence h1 : S′(G) → Σ1

if S(G) contains in�nitely many circles (or, equivalently, π1(G) has in�nite
rank), or a proper homotopy equivalence h2 : S′(G) → Sn ⊂ Σ1 where Sn
is the union of R≥0 with the n �rst circles of Σ1, if π1(G) has rank n. In
each case, the composite f = hi ◦ r′ ◦g′ : X → Σ1 is the required essential
proper map. �

Theorem 3.1 can also be improved with a further equivalent condition
involving the proper shape in the sense of [2], as in the theorem below.

Theorem 3.4. Under the assumptions of Theorem 3.1, each of the con-
ditions listed there is equivalent to each of the following two.

(vi) X has the proper shape of a tree.
(vii) Any proper map into a locally compact ANR, f : X → Y , factor-

izes up to proper homotopy through a tree.

Recall that, in [14, Theorem 3.1], having the proper shape of a tree
is characterized by the so-called SUV∞ property. Namely, a space X
has the proper shape of a tree if and only if given a closed embedding
X ⊂ Y into some (equivalently, any) locally compact ANR Y and any
closed neighbourhood of X in Y and V , there is another closed neigh-
bourhood, U ⊂ V , such that the inclusion i : U → V factorizes up to
proper homotopy as a composite h ◦ g : U → T → V where T is a tree.

Proof of Theorem 3.4. (vi)⇒(vii). We start by embedding X in the Eu-
clidean space R3 as a closed set. As Y is a locally compact ANR, there is

a proper extension of f to a closed neighbourhood of X, f̃ : V → Y ([2,
Lemma 3.2]). Moreover, as X has the proper shape of a tree, there is a
closed neighbourhood X ⊂ U ⊂ V such that the inclusion i : U → V is
properly homotopic to a composite h ◦ g : U → T → V for some tree T .

Then f = f̃ |X is properly homotopic to the composite f̃ ◦h ◦ g|X, which
is the required factorization of f .
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(vii)⇒(ii) Since graphs are ANR, condition (vii) yields that any proper
map f : X → G into a graph is inessential and so (ii) follows from Theorem
3.1.

Finally, as X is 1-dimensional, it can be embedded as a closed set into
R3 and so in order to prove (ii)⇒(vi), it will su�ce to check the SUV∞

property for a closed embedding of X into R3. Let V be any closed
neighbourhood of X in R3. By using [16, Theorem 35], we �nd a triangu-
lated (in�nite) polyhedron Z ⊂ V which is also a closed neighbourhood
of X. Next, we consider the locally �nite open cover of Z, S = {Sv}v∈Z ,
consisting of the open stars Sv =

◦
st (v;Z) of the vertices of Z, and let

i−1S be the locally �nite open cover of X formed with the counterimages
i−1(Sv) for the inclusion i : X → Z. By hypothesis, there is a locally
�nite acyclic re�nement O ≺ i−1S whose nerve N(O) is a tree and the
canonical barycentric map α : X → N(O) is proper. Here, we use that O
is locally �nite and the open sets in S, and so the open sets in O, have
compact closure. Let us consider the following diagram

W

α̃ ""E
EE

EE
EE

EE
X

α

��

joo i // Z
k // V ⊂ R3

N(O)
π // N(i−1S)

∼=ψ

OO

where π is the simplicial map de�ned by �xing for each O ∈ O an open set
π(O) = i−1(Sv) with O ⊂ i−1(Sv), and ψ is the simplicial isomorphism
which sends i−1(Sv) to v. Moreover, α̃ is an extension of α to a closed
neighbourhood X ⊂ W ⊂ V given by [2, Lemma 3.2]. Notice that the
square is commutative up to proper homotopy since for each x ∈ X,
ψ ◦π ◦α(x) lies in an edge of any simplex of Z containing x. By [2,
Lemma 3.4], one �nds a closed neighbourhood ofX, U ⊂W , such that the
inclusion U ⊂ V is properly homotopic to the composite ψ ◦π ◦ α̃|U . �

4. Tree-Likeness and the Existence of

Enough Acyclic Refinements

This section is devoted to the comparison of tree-likeness and the ex-
istence of enough acyclic re�nements in the proper category. In order to
�x the terminology, we introduce the following de�nition.

De�nition 4.1. A 1-dimensional generalized continuum X is termed
strongly tree-like if it satis�es the equivalent conditions listed in �3. Namely,

(i) any open cover of X admits a locally �nite countable acyclic re�ne-
ment.

(ii) X has enough acyclic re�nements;
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(iii) any continuous map f : X → G is inessential;
(iv) any proper map f : X → G is inessential;
(v) any proper map f : X → G factorizes as a composite of proper maps

X → T → G through a tree T ;
(vi) X has the proper shape of a tree;
(vii) any proper map into a locally compact ANR, f : X → Y , factorizes

up to proper homotopy through a tree.

See also the equivalent variations (iii′) in Theorem 3.2 and (iv′) and (v′)
in Theorem 3.3.

The following result is an immediate consequence of Theorem 3.1 and
[8, Theorem 11].

Proposition 4.2. Any strongly tree-like generalized continuum X is tree-
like.

However, in contrast to the compact case (see [10, Theorem 2.1]), the
converse of Proposition 4.2 does not hold in the non-compact setting as
the following example shows.

Example 4.3. Let X ⊂ [0, 1] × R+ be the plane subspace depicted in
thick lines in Figure 2 below.

G

X

Figure 2

Notice that X is homeomorphic to the space obtained by removing the

origin from the sin 1
x -curve. Then X̂ is homeomorphic to the sin 1

x -curve
and, hence, X is a one-ended tree-like generalized continuum by [5, The-
orem 4.1] (see the Introduction). However, in [8, Example 12], it is shown
that the obvious projection of X onto the graph G depicted in thin lines in
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Figure 2 (proper homotopy equivalent to Σ1 in Figure 1) is a proper sur-
jection which does not factorize through a tree. Thus, X is not strongly
tree-like.

The following theorem characterizes the class of generalized continua
for which both notions of tree-likeness coincide. The proof is rather
lengthy and it will be postponed to the next section.

Theorem 4.4. For any generalized continuum X, the following state-
ments are equivalent.

(i) X is strongly tree-like.
(ii) X is tree-like and admits an exhausting sequence of subcontinua.
(iii) X admits an exhausting sequence consisting of tree-like subcontinua.

A theorem due to T. B. McLean (see [8]) shows that tree-like continua
are preserved by con�uent maps. As an immediate consequence of Theo-
rem 4.4, we get the extension to the proper category of McLean's theorem
for the strong version of tree-likeness.

Proposition 4.5. Let X be a strongly tree-like generalized continuum.
If f : X → Y is a con�uent proper surjection, then Y is also strongly
tree-like.

Recall that a continuous surjection f : X → Y is con�uent if for
every subcontinuum B ⊂ Y we have that f(A) = B for each connected
component A ⊂ f−1(B). In that case, the restriction f : A → f(A) = B
is also con�uent. See [8].

In the proof of Proposition 4.5, we use the following lemma; see [5,
Theorem 5.6] for a more general result.

Lemma 4.6. Any subcontinuum Z ⊂ X of a tree-like generalized contin-
uum X is a tree-like continuum.

Proof of Proposition 4.5. By Theorem 4.4, there is an exhausting sequence
X = ∪n≥1Xn consisting of tree-like subcontinua. The properness of f
yields that the images {f(Xn)}n≥1 form an exhausting sequence of Y .
We claim that each f(Xn) is tree-like as well, and so Y is strongly tree-
like by again applying Theorem 4.4.

To check the claim, take any component C ⊂ f−1(f(Xn)). As f is
con�uent, f(C) = f(Xn), and the restriction f |C : C → f(Xn) is also
con�uent. As C is tree-like (Lemma 4.6), so is f(Xn) by McLean's theo-
rem. �
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Remark 4.7. For arbitrary con�uent proper maps, McLean's theorem
does not hold in the non-compact setting for the weaker notion of tree-
likeness; see [5, Remark 5.5] for an example. However, it still holds for end-
preserving (i.e., the map induced on ends is a homeomorphism) con�uent
maps; see [5, Theorem 5.4].

5. Proof of Theorem 4.4

The proof will be given in two parts. For the �rst part we will use
Lemma 4.6 above.

Proof of (ii)⇒(iii)⇒(i) in Theorem 4.4. We get (ii)⇒(iii) as an immedi-
ate consequence of Lemma 4.6. Moreover, if (iii) holds, let {Xn}n≥1 be
an exhausting sequence of X consisting of tree-like subcontinua and let
f : X → G be any continuous map into a graph G. Consider the universal

covering space p : G̃ → G and choose points x0 ∈ X1 and x̃0 ∈ G̃ with
p(x̃0) = f(x0). Since each Xn is a tree-like continuum, each restriction

fn = f |Xn : Xn → G is inessential, and there exists a lifting f̃n : Xn → G̃

with f̃n(x0) = x̃0. Moreover, by the uniqueness of liftings on connected

spaces it follows that f̃n+1 agrees with f̃n on Xn and, therefore, we have

a well-de�ned lifting of f by f̃ = ∪n≥1f̃n : X = ∪n≥1Xn → G̃. Here, we

use that {Xn}n≥1 is an exhausting sequence. Finally, as G̃ is contractible,

the composite f = p ◦ f̃ is inessential and, hence, X is strongly tree-like.
This shows (iii)⇒(i). �

For the remaining part of the proof of Theorem 4.4, we recall from
[12, De�nition V.47.VIII.1] that the constituent of x ∈ X is the union of
all subcontinua of X containing x. Notice that a generalized continuum
X is continuumwise connected if and only if X has just one constituent.
Notice also that the intersection of any constituent with a compact set
A ⊂ X consists of a union of components of A.

The following lemmas concerning constituents will be crucial for the
rest of the proof of Theorem 4.4.

Lemma 5.1. Assume that the generalized continuum X has an exhausting
sequence {Xn}n≥1 with the following property:

(P) For each n ≥ 1, there exists some mn > n such that for any
constituent A ⊂ X, the intersection A ∩ Xn is contained in a
component of Xmn

.

Then X admits an exhausting sequence {X ′
s}s≥1 for which the following

property holds:

(Q) Each component C ⊂ X ′
s (s ≥ 1) can be written as an intersection

C = AC ∩X ′
s for some constituent AC of X.



ON THE NOTION OF TREE-LIKENESS FOR GENERALIZED CONTINUA 315

Proof. We next construct inductively an increasing sequence of integers
1 = m0 < m1 < . . . < ms < . . . and an increasing sequence of compact
sets {X ′

s}s≥1 as follows. Given ms−1 (with m0 = 1), let As be the
family of all constituents of X which meet Xms−1

. Then ms > ms−1

is chosen according to property (P); that is, for each A ∈ As, there
exists a component CA ⊂ Xms

with A ∩ Xms−1
⊂ CA. We now de�ne

X ′
s = ∪A∈AsCA. We claim that X ′

s is a closed set of Xms and, hence,
compact. Indeed, let {xn}n≥1 ⊂ X ′

s be a sequence converging to some
x ∈ Xms

. As each CA is compact, we can assume without loss of generality
that xn ∈ CAn

for a sequence of components CAn
⊂ Xms

. Let pn ∈
An ∩Xms−1

. By compactness, there is no loss of generality in assuming,
in addition, that {pn}n≥1 converges to some p ∈ Xms−1

. Then both p
and x belong to the inferior limit LiCAn ⊂ Xms .

Recall that LiCAn consists of all points x ∈ X such that each open
neighbourhood of x meets eventually all CAn

's. Moreover, L = LiCAn
is

a continuum by [12, Theorem V.47.II.6]. Let A be the constituent of X
containing L. As p ∈ Xms−1

∩ L ⊂ Xms−1
∩ A, we have A ∈ As, and so

Xms−1
∩A ⊂ CA. Hence, x ∈ L ⊂ CA ⊂ X ′

s.
Furthermore, one readily checks Xms−1 ⊂ X ′

s ⊂ Xms , and so X ′
s ⊂

Xms ⊂ intXms+1 ⊂ intX ′
s+1. Hence, {X ′

s}s≥1 is an exhausting sequence
of X. It remains to check that this sequence satis�es property (Q). In
fact, if C is a component of X ′

s, then C is a component of Xms
for which

there exists a constituent A with ∅ ̸= A ∩Xms−1
⊂ C. Then, obviously,

C ⊂ A∩X ′
s. Moreover, by construction, any other component Z ⊂ Xms

,
Z ̸= C, with Z ⊂ A misses Xms−1 (otherwise, Z ∩ C ̸= ∅), and so it lies
outside X ′

s. Thus, C = A ∩X ′
s. �

Remark 5.2. Notice that property (Q) of the sequence {X ′
s} in Lemma

5.1 is equivalent to

(Q′) for any constituent A ⊂ X, the intersection A ∩ X ′
s (s ≥ 1) is

either empty or a whole component of X ′
s.

One readily derives from property (Q′) that for any component C ⊂
X ′
s+1, the intersection C ∩ X ′

s is either empty or a whole component of
X ′
s.

Lemma 5.3. Any generalized continuum X satisfying property (P) in
Lemma 5.1 admits an exhausting sequence consisting of subcontinua.

Proof. By Lemma 5.1, there exists an exhausting sequence ofX, {Xs}s≥1,
satisfying property (Q′) in Remark 5.2. Thus, it will su�ce to check that
X is continuumwise connected; that is, X reduces to a unique constituent,
and so each Xs is a continuum.
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To prove that X is continuumwise connected, assume to the contrary
that X has at least two constituents A and B. So, by property (Q′),
whenever the intersections A ∩ Xs and B ∩ Xs are not empty, they are
(distinct) components of Xs. We can assume without loss of generality
that both A and B meet X1.

Now we observe that, for each s ≥ 1, the components of Xs de�ne a
u.s.c. decomposition with a 0-dimensional compact quotient πs : Xs → Ds
[12, theorems V.46.V.3 and V.47.VI.1] such that the inclusion i : Xs →
Xs+1 induces a continuous map ĩ : Ds → Ds+1. Moreover, by property
(Q′) of the sequence {Xs}s≥1, if a component in Ds+1 meets Xs, it does

it in a whole component; see Remark 5.2. Hence, the map ĩ is injective
and so Ds can be identi�ed with a closed set of Ds+1.

Let αs, βs ∈ Ds be the classes of the components A ∩Xs and B ∩Xs

(s ≥ 1), respectively. The separation theorem for dimension 0 in [7,
Theorem 1.2.6] gives us a decomposition D1 = DA

1 ∪ DB
1 , into two non-

empty disjoint closed sets of D1 with α1 ∈ DA
1 and β1 ∈ DB

1 . This way
X1 is decomposed as the disjoint union of the closed sets P1 = π−1

1 (DA
1 )

and Q1 = π−1
1 (DB

1 ).
As DA

1 and DB
1 can be regarded as closed sets of D2, we apply again

the aforementioned separation theorem to get a decomposition of D2 into
two disjoint closed sets DA

2 and DB
2 , with DA

1 ⊂ DA
2 and DB

1 ⊂ DB
2 .

Notice also that α2 ∈ DA
2 and β2 ∈ DB

2 . This way we have X2 = P2 ∪Q2

decomposed as the disjoint union of the closed sets P2 = π−1
2 (DA

2 ) and
Q2 = π−1

2 (DB
2 ). Moreover, P1 ⊂ P2 and Q1 ⊂ Q2.

By proceeding inductively we can �nd increasing sequences {Ps}s≥1

and {Qs}s≥1 where Ps and Qs are disjoint closed sets of Xs with Xs =
Ps∪Qs, and A∩Xs ⊂ Ps and B∩Xs ⊂ Qs. As {Xs}s≥1 is an exhausting
sequence, the unions P = ∪∞

s=1Ps and Q = ∪∞
s=1Qs are disjoint nonempty

closed sets of X with X = P ∪Q. This contradicts the connectedness of
X. Thus, X is necessarily continuumwise connected. �

We are ready to complete the proof of Theorem 4.4. For this we use
the following easy lemma.

Lemma 5.4. Let X be any generalized continuum and K,L ⊂ X be
two compact sets with K ⊂ intL. Assume that C ⊂ L is an irreducible
continuum between x, y ∈ K with C − K ̸= ∅. Then, for any p ∈ C ∩
(intL−K) and any open neighbourhood of p, U ⊂ intL−K; the di�erence
D = C − (U ∪ intK) is a non-connected compact set.

Proof. Obviously, D is compact. It cannot be connected since, otherwise,
the union C ′ = D ∪ (C ∩K) would be a continuum containing x and y
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and smaller than C. Here, we use that all components of C ∩ K meet
FrK [12, Theorem V.47.III.2]. �

Proof of (i)⇒ (ii) in Theorem 4.4. We proceed by contradiction. Assume
that X does not admit an exhausting sequence consisting of subcontinua.
Thus, by Lemma 5.3, all exhausting sequences of X fail to have property
(P) in Lemma 5.1. Therefore, given any exhausting sequence {Xn}n≥0,
there exists n0 ≥ 0 such that, for every n ≥ n0, one can �nd a con-
stituent Zn ⊂ X such that the intersection Zn ∩Xn0

meets at least two
components of Xn, say An and Bn.

Moreover, as both An and Bn lie in the constituent Zn, there exists
mn > n such that An ∪ Bn is contained in a connected component of
Xmn

(n ≥ n0). After choosing appropriate subsequences and reindexing,
if necessary, we can assume n0 = 0 and mn = n+ 1.

Choose points an ∈ An and bn ∈ Bn, and let Cn ⊂ Xn+1 be an
irreducible continuum between an and bn. Note that C2n−1 ⊂ intX2n+1,
so that, by reindexing these subsequences, we can assume Cn ⊂ intXn+1.

As an and bn belong to distinct components of Xn, then Cn−Xn ̸= ∅.
Take pn ∈ Cn −Xn. Let Un ⊂ Vn+1,n be an open neighbourhood of pn,
where for all m < s, Vs,m = intXs − Xm for m ≥ 1 and Vs,0 = intXs.
Notice that the Vn+1,n's form a locally �nite family of pairwise disjoint
sets and so do the Un's.

By Lemma 5.4, we can decompose each compact set (n ≥ 1) Dn =
Cn−(Un∪intXn) into two disjoint non-empty compact setsDn = D1

n∪D2
n.

Let U in ⊂ Vn+1,n−1 (i = 1, 2) be an open neighbourhood of Di
n missing pn

and Cn−1 with U1
n ∩U2

n = ∅. In particular, Cn − intXn ⊂ Un ∪U1
n ∪U2

n.
Next, we choose an open neighbourhood ofX0, U0 ⊂ intX1, and enlarge

the family of open sets U0 = {U0, Un, U
i
n : i = 1, 2 and n ≥ 1} to an open

cover of X, U = U0 ∪ (∪∞
n=1Un), where Un = {Unα}α∈Λn is an open cover

of Xn − (Xn−1 ∪Cn−1 ∪ (Cn ∩ FrXn)) (n ≥ 1 with C0 = ∅) consisting of
open sets Unα ⊂ Vn+1,n−1 which miss Cn − intXn.

Let W ≺ U be any re�nement of U . From the construction of the cover
U , we derive that for any W ∈ W with W ∩X0 ̸= ∅, either W ⊂ intX1

or W ⊂ U1
α for some α; in particular, W misses Un for n ≥ 1 and U in for

n ≥ 2 and i = 1, 2. Moreover, for any W ∈ W with W ∩Di
n ̸= ∅, we have

W ⊂ U in. Similarly, if pn ∈W , then W ⊂ Un.
The compactness of X0 allows us to assume without loss of generality

that the sequences {an}n≥1 and {bn}n≥1 converge to points a, b ∈ X0,
respectively (possibly, a = b). Let W0,W

′
0 ∈ W with a ∈W0 and b ∈W ′

0.
Suppose W0 ∩W ′

0 ̸= ∅ (possibly, W0 =W ′
0) and let n be large enough

to have an ∈ W0 and bn ∈ W ′
0. The connectedness of Cn yields that Cn

is covered with a �nite chain in W between an and bn, that is, a sequence
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C = {W1, . . . ,Ws} ⊂ W with an ∈ W1, bn ∈ Ws, and Wi ∩Wi−1 ̸= ∅.
We also assume that the elements of C are distinct, except possibly W1

and Ws. As observed above, any two points d1 ∈ D1
n and d2 ∈ D2

n must
lie in disjoint sets of the chain C distinct from W1, Ws, and any element
of C containing pn. Therefore, the length of C is ≥ 4. Moreover, as W0

and W ′
0 meet X0, it follows that C ∪ {W0,W

′
0} contains a cyclic chain of

length ≥ 3. This is a contradiction to the strong tree-likeness of X.
Otherwise, if W0 ∩W ′

0 = ∅, we also consider the continuum Cn+2 and
a chain C′ = {W ′

1, . . . ,W
′
s′} ⊂ W between an+2 and bn+2 given by the

connectedness of Cn+2. As above, the length of C′ is ≥ 4. Furthermore,
as the sets U in+2 and Un+2 are disjoint with U in and Un, C′ − C contains
at least three di�erent elements, and so a cyclic chain of length ≥ 3 can
be found in C ∪ C′ ∪ {W0,W

′
0}. This leads again to a contradiction, and

the proof of Theorem 4.4 is �nished. �

6. Local Homeomorphisms and Tree-Likeness

in the Proper Category

A theorem due to Ma¢kowiak [13] states that any local homeomorphism
of a continuum onto a tree-like continuum is a homeomorphism. Later,
Ma¢kowiak's theorem was extended to locally injective surjections onto
tree-like continua by Heath [9]; see also [3, Proposition 1]. Recall that
a continuous map f : X → Y is said to be locally injective if, for each
x ∈ X, there is an open neighbourhood Ω(x) of x such that the restriction
f |Ω(x) is injective.

Example 6.2 below shows that the proper analogue of Heath's theo-
rem does not hold for tree-like generalized continua. It does under the
assumption of continuumwise connectedness, as below.

Proposition 6.1. Let f : X → Y be a locally injective proper surjection
from a continuumwise connected generalized continuum X onto a tree-like
generalized continuum Y . Then f is a homeomorphism.

Proof. Let x ̸= x′ be two distinct points of X and take a continuum
Γ ⊂ X containing both points. Then the restriction f |Γ : Γ → f(Γ) is
locally injective and f(Γ) is a tree-like continuum by Lemma 4.6. Hence,
f |Γ is a homeomorphism by [9] or [3, Proposition 1], and so f(x) ̸= f(x′).
This shows that f : X → Y is injective and, hence, a homeomorphism
since proper maps are closed maps [6, Theorem 3.7.18]. �

The next example shows that the continuumwise connectedness of Y
cannot be dropped from Proposition 6.1. We actually give an example
of a proper local homeomorphism between tree-like generalized continua
which is not a homeomorphism.
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Example 6.2. Let X ⊂ [0, 1] × R+ be the generalized continuum in
Example 4.3. For 0 ≤ k ≤ 3, let Xk ⊂ S1 × R+ denote the image of the
generalized continuum X by the canonical embedding φk : [0, 1]× R+ →
S1 ×R+ given by φk(t, y) = (ei

(k+t)π
2 , y). Then, if Z = ∪3

k=0Xk, the local
homeomorphism f : S1 × R+ → S1 × R+, given by f(eiθ, y) = (ei2θ, y),
restricts to a local homeomorphism f : Z → f(Z) where Z and f(Z) are
non-homeomorphic tree-like generalized continua.

Although locally injective proper surjections onto tree-like generalized
continua may fail to be homeomorphisms, they always re�ect tree-likeness.
Namely, by the use of [5, Theorem 4.1] (see the Introduction), we modify
the proof of the main theorem in [9] to get the following result.

Theorem 6.3. Let f : X → Y be a locally injective proper surjection
between generalized continua and assume that Y is tree-like. Then X is
also tree-like.

In the proof of Theorem 6.3, we will need the following lemma whose
proof is a straightforward application of the properness of f .

Lemma 6.4. Any locally injective proper surjection f : X → Y between
generalized continua is �nite-to-one. Moreover, given any compact set
L ⊂ Y , there exists ϵ > 0 such that d(x, x′) > ϵ whenever x ̸= x′ and
f(x) = f(x′) ∈ L. Here, d is any metric on X.

Proof of Theorem 6.3. According to [5, Theorem 4.1], Ŷ is tree-like andX

will be tree-like if X̂ is too. We next use the induced map f̂ : X̂ → Ŷ (not
necessarily locally injective, see Example 6.2) to derive the tree-likeness

of X̂ from the tree-likeness of Ŷ .
As X̂ is a continuum, it will su�ce to show that an arbitrary open

cover of X̂, say U , admits an acyclic re�nement (see [10, Theorem 2.1]).
Let us start by choosing a �nite cover of the 0-dimensional space of

ends F(Y ) by pairwise disjoint open sets in Ŷ , {Ej}nj=1. Then we �nd

pairwise disjoint open sets Wi in X̂ (1 ≤ i ≤ m) with F(X) ⊂ ∪mi=1Wi

and f̂(Wi) ⊂ Ej(i) for some j(i). Here, we use the continuity of f̂ and
the 0-dimensionality of F(X). Furthermore, by choosing the diameters of
the Wi's smaller than the Lebesgue number of U , we have that each Wi

is contained in some element of U .
Notice that for the compact complement K = X̂ − ∪mi=1Wi, we have

Ŷ − f(K) ⊂ ∪nj=1Ej . For each 1 ≤ j ≤ n, we form the open set Θj =
∪j(i)=jWi.

Let d = d̂|X be the restriction of a metric d̂ on X̂. Then Lemma
6.4 yields that, for each y ∈ Y , the �bre f−1(y) is �nite and, further-
more, there is ϵ > 0 such that d(x, x′) > ϵ for any two distinct points
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x, x′ ∈ f−1(y) with y ∈ f(K). In particular, for each y ∈ f(K), the open
balls Byx ⊂ X of centre x ∈ f−1(y) and radius ϵ

2 are pairwise disjoint.
Moreover, by choosing ϵ smaller than the Lebesgue number of U , we have
that each Byx is contained in some element of U . Clearly, the balls Byx
cover f−1(f(K)), and so the family V = {Wi; 1 ≤ i ≤ m} ∪ {Byx; y ∈
f(K), x ∈ f−1(y)} is a re�nement of U .

For each y ∈ f(K), Uy = ∪{Byx;x ∈ f−1(y)} is an open neighbourhood

of f−1(y) and the di�erence Ωy = Ŷ − f̂(X̂−Uy) is an open set for which

it is easily checked that f̂−1(Ωy) ⊂ Uy. Here, we use that f̂ is a closed

map. Similarly, we consider the open set Ωj = Ŷ − f̂(X̂−Θj) (1 ≤ j ≤ n)

for which f̂−1(Ωj) ⊂ Θj .
We claim that the family O = {Ωy}y∈f(K)∪{Ωj}1≤j≤n is an open cover

of Ŷ . Indeed, if y ∈ Ŷ − f(K) ⊂ ∪nj=1Ej , then there is a unique j0 with

y ∈ Ej0 . Moreover, as f−1(y) does not meet K, we get f−1(y) ⊂ Θj0 ,
whence y ∈ Ωj0 .

Let G = {Gα}α∈Λ (Gα ̸= Gα′ for α ̸= α′) be an acyclic re�nement

of O provided by the tree-likeness of Ŷ . We construct from G an acyclic
re�nement L of U as follows.

Let Λ0 be the set of indexes α ∈ Λ with Gα ⊂ Ωj for some j, and
let Λ1 = Λ − Λ0. For each α ∈ Λ0, we take j(α) with Gα ⊂ Ωj(α) and
for each pair (α, i) with j(i) = j(α), we consider the open set L(α, i) =
f−1(Gα) ∩ Wi if this set is not empty. Furthermore, for each α ∈ Λ1,
we choose y(α) ∈ f(K) with Gα ⊂ Ωy(α) and for each pair (α, x) with

x ∈ f−1(y(α)), we consider the open set L(α, x) = f−1(Gα) ∩ B
y(α)
x if

this set is not empty.

We will �nish the proof by checking that

L = {L(α, i);α ∈ Λ0, j(i) = j(α)} ∪ {L(α, x);α ∈ Λ1, x ∈ f−1(y(α))}

is an acyclic re�nement of U . Notice that L(α, i) ⊂ Wi for α ∈ Λ0,

whereas L(α, x) ⊂ B
y(α)
x for α ∈ Λ1. Thus, L re�nes V and, hence, U .

In order to see that L covers X̂, let z ∈ X̂ and take an element Gα ∈ G
with f(z) ∈ Gα. If Gα ⊂ Ωj(α), then z ∈ f−1(Gα) ⊂ Θj(α), and so
z ∈ L(α, i) for some i with j(i) = j(α). Similarly, if Gα ⊂ Ωy(α) with

y(α) ∈ f(K), then z ∈ f−1(Ωy(α)) lies in some ball B
y(α)
x and, hence,

z ∈ L(α, x).
It remains to check the acyclicity of L. For this, assume that L contains

a cyclic sequence of distinct elements L1, . . . , Ln (n ≥ 3); that is, Lk ∩
Lk+1 ̸= ∅ for 1 ≤ k ≤ n− 1 and Ln ∩ L1 ̸= ∅.

For each k ≤ n, let αk denote the �rst component of the pair indexing
Lk in L above. Necessarily, the corresponding sets Gαk

meet each other
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cyclically, and the acyclicity of G yields that at least two of the indices
coincide. Assume α1 = α2 = α. If α ∈ Λ0, and L1 = L(α, i1) and
L2 = L(α, i2) with j(i1) = j(i2) = j(α), we have Wi1 ∩Wi2 ̸= ∅, and
so i1 = i2 since the Wi's are pairwise disjoint. Similarly, if α ∈ Λ1,
and L1 = (α, x1) and L2 = L(α, x2) with x1, x2 ∈ f−1(y(α)), we have

x1 = x2 since the balls B
y(α)
x are pairwise disjoint. Thus, L1 = L2.

This contradiction shows that the cover L is an acyclic re�nement of the
arbitrary cover U , and we are done. �

For strongly tree-like spaces, the proper analogue of Heath's theorem
in [9] (see also [3, Proposition 1]) holds in full generality. Namely, we have
the following theorem.

Theorem 6.5. Let f : X → Y be a locally injective proper surjection from
a generalized continuum X onto a strongly tree-like generalized continuum
Y . Then f is a homeomorphism.

The proof mimics the proof of [3, Proposition 1] for ordinary continua,
which is more easily adapted to the non-compact setting than the proof
in [9]. Indeed, the crucial arguments of the proof in [3] are the existence
of star re�nements for arbitrary open covers of a continuum and the fact
that continuous maps between continua are closed. In the proper setting,
one uses the paracompactness of X to obtain the suitable star re�nements
[6, Theorem 5.1.12] and the properness of f to guarantee that f is closed.

Acknowledgments. The authors wish to thank the referee for his/her
helpful comments.
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