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MOTION PLANNING IN CONNECTED SUMS OF

REAL PROJECTIVE SPACES

DANIEL C. COHEN AND LUCILE VANDEMBROUCQ

Abstract. The topological complexity TC(X) is a homotopy in-
variant of a topological spaceX, motivated by robotics, and provid-
ing a measure of the navigational complexity of X. The topological
complexity of a connected sum of real projective planes, that is, a
high genus nonorientable surface, is known to be maximal. We
use algebraic tools to show that the analogous result holds for con-
nected sums of higher dimensional real projective spaces.

1. Introduction

Let X be a �nite, path-connected CW-complex. Viewing X as the
space of con�gurations of a mechanical system, the motion planning prob-
lem consists of constructing an algorithm which takes as input pairs
of con�gurations (x0, x1) ∈ X × X, and produces a continuous path
γ : [0, 1] → X from the initial con�guration x0 = γ(0) to the terminal
con�guration x1 = γ(1). The motion planning problem is of signi�cant in-
terest in robotics; see, for example, Jean-Claude Latombe [15] and Micha
Sharir [17].
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Michael Farber develops a topological approach to the motion planning
problem in [9], [10], and [11]. Let I = [0, 1] be the unit interval, and let
XI be the space of continuous paths γ : I → X (with the compact-open
topology). The map ev : XI → X ×X, de�ned by sending a path to its
endpoints, ev(γ) = (γ(0), γ(1)), is a �bration, with �ber Ω(X), the based
loop space of X. The motion planning problem requests a section of this
�bration, a map s : X ×X → XI satisfying ev ◦s = idX×X . It would be
desirable for the motion planning algorithm to depend continuously on the
input. However, there exists a globally continuous section s : X × X →
PX if and only if X is contractible; see [9, Theorem 1]. This prompts the
study of the discontinuities of such algorithms and leads to the following
de�nition from [10].

De�nition 1.1. A motion planner for X is a collection of subsets F0, F1,
. . . , Fm of X ×X and continuous maps si : Fi → PX such that

(1) the sets Fi are pairwise disjoint, Fi ∩ Fj = ∅ if i 6= j, and cover
X ×X,

X ×X = F0 ∪ F1 ∪ · · · ∪ Fm;

(2) ev ◦si = idFi
for each i; and

(3) each Fi is a Euclidean neighborhood retract.

Refer to the sets Fi as local domains of the motion planner and the
maps si as local rules. Call a motion planner optimal if it requires a
minimal number of local domains (rules, respectively).

De�nition 1.2. For a �nite, path-connected CW-complex X, the (re-
duced) topological complexity of X, TC(X), is one less than the number
of local domains in an optimal motion planner for X, TC(X) = m if there
exists an optimal motion planner F0, F1, . . . , Fm for X.

1.1. Motion planning in cell complexes.

We brie�y recall from [10, �3] a construction of a motion planner for a
�nite cell complex. Recall thatX is a �nite, path-connected CW-complex,
and let Xk be the k-dimensional skeleton of X. Assume that dim(X) = n,
and for k = 0, 1, . . . , n, let V k = Xk \Xk−1 be the union of the open k-
cells of X. For i = 0, 1, . . . , 2n, the sets Fi =

⋃
k+l=i V

k×V l ⊂ X×X are
homeomorphic to disjoint unions of balls, so are Euclidean neighborhood
retracts. Note that F0 ∪ F1 ∪ · · · ∪ F2n = X ×X.

To de�ne a local rule si : Fi → XI , since Fi is the union of disjoint sets
V k ×V l (which are both open and closed in Fi), it su�ces to construct a
continuous map sk,l : V

k×V l → XI satisfying ev ◦sk,l = idV k×V l . Pick a
point vk ∈ V k for each k, and �x a path γk,l in X from vk to vl for each k
and l. Then, for any (x, y) ∈ V k × V l, one can construct a path sk,l(x, y)
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from x to y by �rst moving from x to vk in the cell V k, then traversing
the �xed path γk,l, and �nally moving from vl to y in V l.

This construction exhibits a motion planner forX with 2 dim(X)+1 lo-
cal domains. Consequently, we have the upper bound TC(X) ≤ 2 dim(X)
(for a �nite, path-connected CW-complex X). This upper bound is
achieved by many spaces of interest in topology and applications. For
instance, it is well known that TC(Σg) = 4 for an orientable surface Σg of
genus g ≥ 2; see [9]. More recent work of Alexander Dranishnikov [6], [7]
and the authors [3] shows that the same holds for nonorientable surfaces
of high genus. Observe that the construction above provides an optimal
motion planner in these instances.

1.2. Main result.

The objective of this note is to establish a higher dimensional analog
of these last results. Let Png = RPn# · · ·#RPn be the connected sum of
g copies of the real projective space RPn.

Theorem 1.3. For n ≥ 2 and g ≥ 2, we have TC(Png ) = 2n.

Thus, applying the construction in �1.1 above to a standard CW de-
composition of the space Png yields an optimal motion planner for this
space.

When n = 2, P2
g = Ng is the nonorientable surface of genus g, and it

has been established in [3] that TC(Ng) = 4 for g ≥ 2, completing results
obtained by Dranishnikov [6], [7] in the case g ≥ 4. So we focus on the
case n ≥ 3 below. As we will see, the methods developed in [3] admit
extensions to this higher dimensional case.

Remark 1.4. The case g = 1, with Pn1 = RPn, is signi�cantly more
subtle. As shown by Farber, Serge Tabachnikov, and Sergey Yuzvinsky
[12], for n 6= 1, 3, 7, the topological complexity and immersion dimension
of RPn are equal, TC(RPn) = imm(RPn).

Remark 1.5. For closed n-dimensional manifolds M and N , techniques
analogous to those presented here provide conditions under which
TC(M#N) = TC(M) = 2n is maximal; see Remark 3.2.

2. Preliminaries

Let p : E → B be a �bration. The (reduced) sectional category, or
Schwarz genus, of p, denoted by secat(p), is the smallest integer m such
that B can be covered by m + 1 open subsets, over each of which p has
a continuous section. Classical references include A. S. Schwarz [16] and
I. M. James [14]. The following result makes clear the topological nature
of the motion planning problem.
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Theorem 2.1 (cf. [11, �4.2]). If X is a �nite CW-complex, then the

topological complexity of X is equal to the sectional category of the path-

space �bration ev : XI → X ×X, TC(X) = secat(ev).

The equality TC(X) = secat(ev : XI → X × X) yields the following
estimates:

max{cat(X), zclk(X)} ≤ TC(X) ≤ 2 cat(X) ≤ 2 dim(X); see [9].

Here, cat(X) is the reduced Lusternik�Schnirelmann (LS) category of X
and zclk(X) is the zero-divisors cup-length of the cohomology of X with
coe�cients in a �eld k. More precisely, zclk(X) is the nilpotency of the
kernel of the cup product H∗(X;k)⊗H∗(X;k)→ H∗(X;k), the smallest
nonnegative integer n such that any (n+1)-fold cup product in this kernel
is trivial.

As noted in �1.1, the upper bound TC(X) ≤ 2 dim(X) may also be
obtained from an explicit motion planner construction. We will not make
further use of the lower bounds cat(X) and zclk(X), which are included
here primarily for context and are both insu�cient for our purposes. In-
deed for g ≥ 2, one can show that cat(Png ) = n and zclZ2

(Png ) = 2n − 1.
Following [3], we will instead utilize the topological complexity analog of
the classical Berstein�Schwarz cohomology class, which informs on the LS
category; see [4, Theorem 2.51].

Let X be a space and π = π1(X) its fundamental group. Let Z[π]
be the group ring of π, ε : Z[π] → Z the augmentation map, and I(π) =
ker(ε : Z[π] → Z) the augmentation ideal. Recall that Z[π] and I(π) are
both (left) Z[π × π]-modules through the action given by

(a, b) ·
∑

niai =
∑

ni(aaib̄).

Here, ni ∈ Z, a, b, ai ∈ π, and b̄ is the inverse of b. In general, (see
[19, �6]), left Z[π × π]-modules correspond to local coe�cient systems on
X ×X, which we denote by the same symbols.

Let v = vX ∈ H1(X ×X; I(π)) be the Costa�Farber canonical class of
X introduced in [5], corresponding to the crossed homomorphism π×π →
I(π), (a, b) 7→ ab̄ − 1. The signi�cance of this cohomology class in the
context of topological complexity is given by the following result.

Theorem 2.2 ([5, Theorem 7]). Suppose that X is a CW-complex of

dimension n ≥ 2. Then TC(X) = 2n if and only if the 2nth power of v
does not vanish:

TC(X) = 2n⇐⇒ v2n 6= 0 in H2n(X ×X; I(π)⊗2n).

Here I(π)⊗2n = I(π) ⊗Z I(π) ⊗Z · · · ⊗Z I(π) is the tensor product of
2n copies of I(π), with the diagonal action of π × π.
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3. Reduction to the Case g = 2

Let πg denote the fundamental group of the space Png . Since n ≥ 3, we
have πg = Z2∗· · ·∗Z2 (g copies). As in [3], we will prove that TC(Png ) = 2n

by proving that the evaluation of v2n ∈ H2n(Png × Png ; I(πg)
⊗2n) on the

Z2 top class [Png × Png ]Z2 ∈ H2n(Png × Png ;Z2) does not vanish and use
the bar resolution to carry out the calculation. As noted in [5, Corollary
8], if f : X → Y = K(π, 1) induces an isomorphism of fundamental
groups, we have (f × f)∗vY = vX . In general, for f : X → Y and
ρ = π1(f) : π1(X)→ π1(Y ), we have

(3.1) (f × f)∗vY = I(ρ)vX ∈ H1(X ×X; I(π1(Y )))

Let fg : Png → K(πg, 1) denote the canonical map, the unique (up to
homotopy) map such that π1(fg) = id. We then analyze the cohomology
class v2n, its evaluation on the homology class [Png ×Png ]Z2

in particular,
using the cap product diagram (cf. [1, Ch. V, �10])

H2n(Png × Png ;Z2)⊗H2n(Png × Png ; I(πg)
⊗2n)

(fg×fg)∗

��

∩ // I(πg;Z2)⊗2n
πg×πg

=

��

H2n(πg × πg;Z2)⊗H2n(πg × πg; I(πg)
⊗2n)

(fg×fg)∗

OO

∩ // I(πg;Z2)⊗2n
πg×πg

.

Here I(πg;Z2) = I(πg)⊗Z2, and I(πg;Z2)⊗2n
πg×πg

denotes the coinvariants

of I(πg;Z2)⊗2n with respect to the diagonal action of πg × πg, which
coincides with H0(Png ×Png ; I(πg)

⊗2n⊗Z2) = H0(πg×πg; I(πg)
⊗2n⊗Z2).

As in [3, Theorem 14], the study of the general case g ≥ 2 can be
reduced to the case g = 2. Consider the projection Png → Png−1 that
collapses the last RPn connected summand of Png and induces the pro-
jection πg → πg−1 which sends the last Z2 to 1. We have a (homotopy)
commutative diagram

(3.2) Png

��

fg
// K(πg, 1)

��

Png−1

fg−1
// K(πg−1, 1)

The space Png admits CW-complex structure, based on the standard
CW decomposition of RPn with a single cell in each dimension. Iden-
tify the (n − 1)-skeleton of the last RPn connected summand of Png
with RPn−1, and note that (Png ,RPn−1) is an NDR-pair. Identifying

H∗(Png ,RPn−1;Z2) with the reduced homology of Png /RPn−1 ' Png−1 in
the long exact homology sequence of this pair (cf. [13, Theorem 2.13]),
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we conclude that the projection Png → Png−1 induces an isomorphism
Z2
∼= H2n(Png ;Z2) −→ H2n(Png−1;Z2) ∼= Z2.
Write Fk = (fk × fk)∗ and vk = vπk

. Considering the morphism
I(πg;Z2) → I(πg−1;Z2) induced by the projection πg → πg−1, the nat-
urality condition (3.1), and the diagram (3.2), we obtain the following
commutative diagram

H2n(Png × Png )

∼=
��

Fg
// H2n(πg × πg)

��

∩v2n
g

// I(πg;Z2)⊗2n
πg×πg

��

H2n(Png−1 × Png−1)
Fg−1

// H2n(πg−1 × πg−1)
∩v2n

g−1
// I(πg−1;Z2)⊗2n

πg−1×πg−1

where the Z2 coe�cients in homology are suppressed. Therefore, if the
bottom horizontal map does not annihilate the generator, then neither
does the top horizontal map. In other words, as in [3], the calculation
can be reduced to the �genus� g = 2 case. Thus, for n ≥ 3, Theorem 1.3
will follow from the following proposition which will be proved in the next
section.

Proposition 3.1. For n ≥ 3, v2n([Pn2 × Pn2 ]Z2
) 6= 0.

Remark 3.2. We note that, for M and N closed n-manifolds, a similar
argument to the one above permits one to conclude that TC(M#N) =
TC(M) = 2n as soon as v2n([M ×M ]Z2

) is nonzero. Actually, using [8,
Lemma 7] (and Z-fundamental classes instead of Z2 top classes), we can
see that TC(M#N) is maximal as soon as TC(M) is maximal whenever N
is orientable. Note also that, for simply-connected orientable manifolds,
Dranishnikov and Rustam Sadykov [8] establish the more general result
that TC(M#N) ≥ TC(M).

4. The Case g = 2

In this section, we prove Proposition 3.1.

4.1. Algebraic preliminaries.

Refer to Kenneth S. Brown [2] and Charles A. Weibel [18] as standard
references for cohomology of groups and homological algebra. We will use
the normalized bar resolution B̄∗(π) of Z as a trivial Z[π]-module:

· · · −→ B̄n(π)
∂n−−−→ · · · −→ B̄1(π)

∂1−−−→ B̄0(π) = Z[π]
ε−−→ Z −→ 0.

Here B̄n(π) is the free Z[π]-module with basis

{[g1| · · · |gn], (g1, . . . , gn) ∈ π̄n},
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where π̄ = {g ∈ π | g 6= 1} and ∂n is the Z[π] morphism given by

∂n([g1| · · · |gn]) = g1 · [g2| · · · |gn]

+

n−1∑
i=1

(−1)i[g1| · · · |gi−1|gigi+1|gi+2| · · · |gn]

+ (−1)n[g1| · · · |gn−1]

(with [h1| · · · |hk] = 0 if hi = 1 for some i). The homology of the space
K(π, 1) (or of the group π) with coe�cients in Z2 is then the homology
of the chain complex B̄∗(π;Z2) := B̄∗(π) ⊗π Z2 = (B̄∗(π))π ⊗ Z2 (with
di�erential ∂ ⊗ id).

We now describe a cycle representing the image of the Z2 top class of
Pn2 = RPn#RPn under the map induced by f2 : Pn2 → K(π2, 1). We have
Hi(π2;Z2) = Hi(RP∞∨RP∞;Z2). Let ai and bi be the homology classes
(with a0 = b0) corresponding to the two branches of the wedge. As the
two projections Pn2 = RPn#RPn → RPn each induce an isomorphism
Hn(Pn2 ;Z2) → Hn(RPn;Z2), the image of the Z2 top cell of RPn#RPn
under the map f2 : Pn2 → K(π2, 1) can be identi�ed with the element cn =
an +bn of Hn(π2;Z2) and we are reduced to describe cycles representing
the classes an and bn.

Writing π2 = Z2 ∗ Z2 = 〈a, b | a2 = 1, b2 = 1〉, the classes ai and bi are
represented by the following cycles of B̄i(π2;Z2):

αi = [a|a| · · · |a], βi = [b|b| · · · |b].

As our calculation will use portions of the calculation carried out in [3],
we will use the isomorphism from π2 = 〈a, b | a2 = 1, b2 = 1〉 to the
in�nite dihedral group D = 〈x, y | yxy = x, x2 = 1〉 given by a 7→ x
and b 7→ yx. We will then work with the following cycles of B̄i(D;Z2) as
representatives of the classes ai and bi:

α′i = [x|x| · · · |x], β′i = [yx|yx| · · · |yx].

For X = K(π, 1), the Costa�Farber TC canonical cohomology class
v ∈ H1(X×X; I(π)) can be described as the class of the canonical degree
1 cocycle, ν : B̄1(π × π) → I(π), which is well de�ned on the normalized
bar resolution and given by

ν([(g, h)]) = gh̄− 1

for [(g, h)] ∈ B̄1(π × π), and h̄ = h−1 as above. As in [3], we have the
following explicit expression of the nth power of v ∈ H1(X ×X; I(π)).
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Lemma 4.1. The nth power of the canonical TC cohomology class v is

the class of the cocycle νn of degree n given by

νn : B̄n(π × π) → I(π)⊗n

[(g1, h1)| · · · |(gn, hn)] 7→ (−1)n(n−1)/2 · u1 ⊗ u2 ⊗ · · · ⊗ un
where u1 = g1h̄1 − 1 and ui = (g1 · · · gi−1)(gih̄i − 1)(h̄i−1 · · · h̄1) for each

i, 2 ≤ i ≤ n.

We will also use the Eilenberg�Zilber chain equivalence (well de�ned
on normalized bar resolutions)

(4.1) EZ : B̄∗(π)⊗ B̄∗(π) −→ B̄∗(π × π),

which is the Z[π × π] ∼= Z[π]⊗ Z[π] morphism given by

EZn :
n⊕
i=0

B̄i(π)⊗ B̄n−i(π) → B̄n(π × π)

[g1| · · · |gi]⊗ [hi+1| · · · |hn] 7→
∑

σ∈Si,n−i

sgn(σ)[qσ−1(1)| · · · |qσ−1(n)]

where Si,n−i denotes the set of (i, n − i) shu�es, sgn(σ) is the signature
of the shu�e σ (which can be omitted over Z2), and

qk =

{
(gk, 1) if 1 ≤ k ≤ i,
(1, hk) if i+ 1 ≤ k ≤ n.

Example 4.2. We �nd an explicit expression of ν4(EZ(α′2 ⊗ β′2)) in
I(D;Z2)⊗4, which will be useful in the proof of Proposition 3.1 . Since
α′2 = [x|x] and β′2 = [yx|yx], we have

EZ(α′2 ⊗ β′2) = [x1|x1|y2x2|y2x2] + [x1|y2x2|x1|y2x2]

+ [x1|y2x2|y2x2|x1] + [y2x2|x1|x1|y2x2]

+ [y2x2|x1|y2x2|x1] + [y2x2|y2x2|x1|x1]

where x1 = (x, 1), x2 = (1, x), y1 = (y, 1), and y2 = (1, y). Using Lemma
4.1 together with the fact that x2 = 1 and (yx)2 = 1, we obtain

(4.2)
ν4(EZ(α′2 ⊗ β′2)) = (x− 1)⊗ (1− x)⊗ (yx− 1)⊗ (1− yx)

+ (x− 1)⊗ x(yx− 1)⊗ (1− x)yx⊗ (1− yx)

+ (x− 1)⊗ x(yx− 1)⊗ x(1− yx)⊗ (1− x)

+ (yx− 1)⊗ (x− 1)yx⊗ (1− x)yx⊗ (1− yx)

+ (yx− 1)⊗ (x− 1)yx⊗ x(1− yx)⊗ (1− x)

+ (yx− 1)⊗ (1− yx)⊗ (x− 1)⊗ (1− x)
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The image of this expression in the coinvariants I(D;Z2)⊗4
D×D corresponds

to the element v4(a2 × b2) ∈ H0(D ×D; I(D;Z2)⊗4) ∼= I(D;Z2)⊗4
D×D.

Let Y = 〈y | y2 = 1〉 and Z = 〈z | z2 = 1〉. We have I(Y ;Z2) ∼= Z2(y−1)
and I(Z;Z2) ∼= Z2(z − 1). Consider the projection I(D;Z2) → I(Y ;Z2)
sending x to 1 and the projection I(D;Z2) → I(Z;Z2) sending both x
and y to z (and hence yx 7→ 1). One can check that, after projection
onto I(Y ;Z2)⊗2 ⊗ I(Z;Z2)⊗2 ∼= Z2, (4.2) yields a unique non-zero term
(y − 1) ⊗ (y − 1) ⊗ (z − 1) ⊗ (z − 1) which corresponds to the element
[y2x2|y2x2|x1|x1] ∈ B̄4(D ×D).

4.2. Proof of Proposition 3.1.

The statement will follow from the fact that the image of the Z2 top
class of Pn2 ,

cn = (f2)∗([Pn2 ]Z2
) ∈ Hn(π2;Z2) = Hn(D;Z2),

satis�es v2n(cn × cn) = v2n ∩ (cn × cn) 6= 0.
Let G = D×D and X = K(G, 1), and let ∆: X → X×X be the diag-

onal map. For the G-modules M = I(D)⊗2n, M ′ = I(D)⊗4, and M ′′ =
I(D)⊗2n−4, and the homology and cohomology classes ζ ∈ H2n(G;Z2)
and ω ∈ H2n(G × G;M) = H2n(G × G;M ′ ⊗M ′′), a cap product dia-
gram as in [1, Ch. V, �10] yields

∆∗(ζ ∩∆∗(ω)) = ∆∗(ζ) ∩ ω

in H0(G×G;M ⊗ Z2). Fixing ω = v4 × v2n−4 ∈ H2n(G×G;M ′ ⊗M ′′),
so that ∆∗(ω) = v4 ∪ v2n−4 = v2n, we obtain the commuting diagram

H2n(G;Z2)

v2n

��

∆∗ // H2n(G×G;Z2)

v4×v2n−4

��

H0(G;M ⊗ Z2)
∆∗ // H0(G×G;M ′ ⊗M ′′ ⊗ Z2)

where the vertical maps are cap products with the indicated cohomology
classes.

Let κ4,2n−4 denote the composition of the Künneth isomorphism and
the projection indicated below

H2n(G×G;Z2)→
⊕

i+j=2n

Hi(G;Z2)⊗Hj(G;Z2) � H4(G;Z2)⊗H2n−4(G;Z2),
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and let ∆4,2n−4 = κ4,2n−4 ◦ ∆∗. As G = D × D and M = M ′ ⊗M ′′ =
I(D)⊗2n, identifying zero-dimensional homology groups in the above com-
muting diagram yields
(4.3)

H2n(D ×D;Z2)

v2n

��

∆4,2n−4
// H4(D ×D;Z2)⊗H2n−4(D ×D;Z2)

v4⊗v2n−4

��

I(D;Z2)⊗2n
D×D

// I(D;Z2)⊗4
D×D ⊗ I(D;Z2)⊗2n−4

D×D

As above, we consider Y = 〈y | y2 = 1〉 and Z = 〈z | z2 = 1〉 and
the projections I(D;Z2) → I(Y ;Z2) and I(D;Z2) → I(Z;Z2). We then
compose the v2n−4 portion of the right-hand vertical map in the diagram
(4.3) with the projection

I(D;Z2)⊗2n−4
D×D −→ I(Y ;Z2)⊗n−2 ⊗ I(Z;Z2)⊗n−2.

There is no need to pass to coinvariants since theD×D action on I(Y ;Z2)
and I(Z;Z2) is trivial. Observe that

I(Y ;Z2)⊗n−2 ⊗ I(Z;Z2)⊗n−2 ∼= Z2(y − 1)⊗n−2 ⊗ Z2(z − 1)⊗n−2 ∼= Z2.

Since cn = an + bn, the expression ∆4,2n−4(cn × cn) decomposes as

4∑
i=0

(ai × a4−i)⊗ (an−i × an−4+i) +

4∑
i=0

(ai × b4−i)⊗ (an−i × bn−4+i)

+

4∑
i=0

(bi × a4−i)⊗ (bn−i × an−4+i) +

4∑
i=0

(bi × b4−i)⊗ (bn−i × bn−4+i)

Now, we can check that, among the right-hand components, the only
terms on which the projection of v2n−4 on I(Y ;Z2)⊗n−2 ⊗ I(Z;Z2)⊗n−2

does not vanish are an−2×bn−2 and bn−2×an−2, represented respectively
by EZ(α′n−2⊗ β′n−2) and EZ(β′n−2⊗α′n−2). Furthermore, calculating in
I(Y ;Z2)⊗n−2 ⊗ I(Z;Z2)⊗n−2, we have

v2n−4(an−2×bn−2) = v2n−4(bn−2× an−2) = (y− 1)⊗n−2⊗ (z− 1)⊗n−2.

Consequently, in I(D;Z2)⊗4
D×D ⊗ I(Y ;Z2)⊗n−2 ⊗ I(Z;Z2)⊗n−2, we have

v2n(cn × cn) = v4(a2 × b2 + b2 × a2)⊗ (y − 1)⊗n−2 ⊗ (z − 1)⊗n−2.

We now check that v4(a2×b2 +b2×a2) does not vanish in I(D;Z2)⊗4
D×D.

For this, recall the expression (in I(D;Z2)⊗4) of ν4(EZ(α′2 ⊗ β′2)) which
has been obtained in (4.2).

By considering, as in [3], the projection

I(D;Z2)⊗4 → I(D;Z2)⊗
∧3

(I(D;Z2)),
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together with the relation xyx = ȳ, we see that the expression (4.2)
reduces to

(yx− x)⊗ (1− yx) ∧ (1− ȳ) ∧ (1− x).

Calculating the image of ν4(EZ(β′2 ⊗ α′2)) in I(D;Z2)⊗
∧3

(I(D;Z2)) in
an analogous manner yields

(yx− x)⊗ (1− yx) ∧ (1− y) ∧ (1− x).

As in [3], we then send the �rst component to I(Y ;Z2) ∼= Z2 (through
x 7→ 1) and the statement follows from the fact that the sum of the two
elements above is the element

s = (x− 1) ∧ (yx− 1) ∧ (y − ȳ) ∈
∧3
I(D;Z2),

which is shown to be nonzero in [3, �3.3.2]. 2
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