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ENTROPY OF INDUCED DENDRITE

HOMEOMORPHISM C(f) : C(D) → C(D)

PALOMA HERNÁNDEZ AND HÉCTOR MÉNDEZ

Abstract. Let f : D → D be a dendrite homeomorphism. Let
C(D) denote the hyperspace of all subcontinua of D endowed with
the Hausdor� metric. Let C(f) : C(D) → C(D) be the induced
homeomorphism in hyperspace C(D). We show in this paper that
the topological entropy of C(f) has only two possible values: 0 or
∞. Also we show that the entropy of C(f) is ∞ if and only if there
exists a point x ∈ D such that x is not an element of the minimal
subdendrite of D that contains the union α(x, f) ∪ ω(x, f).

1. Introduction and Some Definitions

A continuum is a nonempty compact and connected metric space.
Let X = (X, d) be a continuum. Let 2X be the collection of all

nonempty compact subsets of X endowed with the Hausdor� metric Hd

induced by metric d. Each nonempty subset of 2X , with the corresponding
restriction of Hd, is a hyperspace.

If Y is a continuum and Y ⊂ X, then Y is a subcontinuum of X. Let
C(X) denote the hyperspace of all subcontinua of X. Hyperspaces 2X

and C(X) are continua as well; see [15].
A continuum X is an arc if it is homeomorphic to the unit interval

[0, 1] ⊂ R, a simple closed curve provided that it is homeomorphic to the
circle S1 =

{
x2 + y2 = 1

}
⊂ R2, a graph if it can be written as the union

of �nitely many arcs any two of which either are disjoint or intersect only
in one or both of their end points, a tree if it is a graph which contains no
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54B20.
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simple closed curve, and a dendrite provided that it is locally connected
and contains no simple closed curve.

Let N denote the set of all positive integers. A mapping is a continuous
function. In section 5, we recall the de�nition and some properties of the
topological entropy of a mapping f : X → X.

Let 2f : 2X → 2X be the mapping induced in 2X by f : X → X. For
each n ∈ N and for each A ∈ 2X ,

(
2f

)n
(A) = fn(A). Let C(f) : C(X) →

C(X) be the restriction of 2f to hyperspace C(X). If f : X → X is a
homeomorphism, then both 2f and C(f) are homeomorphisms; see [15].
It is known that if D is a dendrite and f : D → D is a homeomorphism,
then entropy of f is 0; see [2].

In 2010, Merek Lampart and Peter Raith [12] proved that if X is an
arc and f : X → X is a homeomorphism, then the topological entropy
of C(f) is 0. In 2013, Mykola Matviichuk [14] proved that for any tree
homeomorphism f : X → X, the topological entropy of C(f) is 0 as
well. In 2009, Gerardo Acosta, Alejandro Illanes, and Héctor Méndez-
Lango [3] produced an example of a dendrite D and a homeomorphism,
f : D → D, where the topological entropy of the induced map C(f) is ∞.
Recently, in 2016, Haithem Abouda and Issam Naghmouchi [1] introduced
another dendrite homeomorphism f : D → D, where the mapping C(f)
has in�nite topological entropy.

Let f : X → X be a homeomorphism. The limit sets α(x, f) and
ω(x, f) are de�ned in section 2.

Our main result in this note is the following: Let D be a dendrite and
f : D → D be a homeomorphism. Then

• the topological entropy of C(f) : C(D) → C(D) has only two
possible values: 0 or ∞;

• the topological entropy of C(f) : C(D) → C(D) is ∞ if and only
if there exists a point x ∈ D such that x is not an element of
the minimal subcontinuum of D that contains the union α(x, f)∪
ω(x, f).

2. Preliminary Results

Let X = (X, d) be a compact metric space that contains more than
one point. Let f : X → X be a mapping. Given a point x in X, the orbit
of x under f is the sequence

o(x, f) = {fn(x) : n ≥ 0},
where f0 denotes the identity map in X, f1 = f , and for each n ∈ N,
fn+1 = f ◦ fn. If there exists n ∈ N with fn(x) = x, then x is a periodic

point of f . If f(x) = x, then x is a �xed point of f . Let Per(f) and
Fix(f) denote the set of all periodic points and of all �xed points of f ,
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respectively. If x ∈ Per(f), then n0 = min {n ∈ N : fn(x) = x} is the
period of x.

The omega limit set of x under f is the set

ω(x, f) =
{
y ∈ X : ∃ {n1 < n2 < · · · } ⊂ N with lim

i→∞
fni(x) = y

}
.

If x ∈ ω(x, f), then it is said that x is a recurrent point of f . Let R(f)
denote the set of all recurrent points of f . Let Λ(f) = ∪{ω(x, f) : x ∈ X}.
Note that

Fix(f) ⊂ Per(f) ⊂ R(f) ⊂ Λ(f).

If f : X → X is a homeomorphism, the alpha limit set of x under f is
the set

α(x, f) = ω(x, f−1).

A nonempty subset A ⊂ X is invariant under f : X → X if f(A) ⊂ A;
it is strongly invariant provided that f(A) = A. An invariant subset A is
a minimal set of f provided that A = ω(a, f) for every point a ∈ A.

Proposition 2.1 contains some basic properties of ω(x, f). See [5].

Proposition 2.1. Let x, y ∈ X, then

• ω(x, f) is closed and nonempty;

• ω(x, f) is strongly invariant under f ;
• for each open set U ⊂ X with ω(x, f) ⊂ U , there exists n0 ∈ N
such that for every n ≥ n0, f

n(x) ∈ U ;

• for each m ∈ N, f(ω(x, fm)) = ω(f(x), fm);
• for each m ∈ N,

ω(x, f) = ω(x, fm) ∪ ω(f(x), fm) ∪ · · · ∪ ω(fm−1(x), fm).

Thus, ω(x, f) is �nite if and only if for some m ∈ N, ω(x, fm) is
�nite;

• if for some N ∈ N, ω(x, fN ) = ω(y, fN ), then ω(x, f) = ω(y, f);
• if limn→∞ d(fn(x), fn(y)) = 0, then ω(x, f) = ω(y, f);
• if card(ω(x, f)) is �nite, say N , then there exists y ∈ Per(f) of

period N with ω(x, f) =
{
y, f(y), f2(y), . . . , fN−1(y)

}
.

Let ε > 0. Then B(x, ε) denotes the open ball around x ∈ X with
radius ε. If A ⊂ X, then the symbols cl(A), int(A), and bd(A) stand for
the closure, the interior, and the boundary of A in X.

Furthermore, if A ̸= ∅,

N(A, ε) = {y ∈ X : there is x ∈ A, d(y, x) < ε} = ∪{B(x, ε) : x ∈ A} ,

and diam(A) = sup {d(x, y) : x, y ∈ A}. The symbol card(A) stands for
the cardinality of A.
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Let A and B be two elements of 2X . Then

Hd(A,B) = inf {ε > 0 : A ⊂ N(B, ε) and B ⊂ N(A, ε)}
de�nes a metric in 2X , the Hausdor� metric. See [10] and [15].

Let {An : n ∈ N} be a sequence in 2X and A ∈ 2X . If

lim
n→∞

Hd(An, A) = 0,

then we write limAn = A.

3. Dendrites

In this section we recall some basic properties of dendrites and of maps
de�ned on dendrites. Let D = (D, d) denote a nondegenerate dendrite.

Theorem 3.1. The following conditions hold:

• Every connected subset of D is arcwise connected.

• Each subcontinuum of D is a dendrite.

• For each pair A,B ∈ C(D), A ∩ B = ∅, there exist open and

connected subsets of D, U , and V , such that A ⊂ U , B ⊂ V , and

cl(U) ∩ cl(V ) = ∅.
• The intersection of any two connected subsets of D is connected.

• For every dendrite mapping f : D → D, Fix(f) ̸= ∅.
Proof of Theorem 3.1 can be found in [15].

Let x ∈ D. It is said that x is an end point of D provided that D \ {x}
is connected; x is a cut point of D if D \ {x} is not connected. The order

of x, ord(x), is the cardinality of the set of all components of D \ {x}.
Each point of D is of order ≤ ℵ0 (see [15]). If ord(x) ≥ 3, it is said that
x is a branch point of D.

Proposition 3.2. Let {An : n ∈ N} be a sequence of nonempty connected

subsets of D such that for each pair n ̸= m, An ∩Am = ∅. Then

lim
n→∞

diam (An) = 0.

Proposition 3.2 is proved in [13].

Given two distinct points a and b in D, there is only one arc from
a to b contained in D. We denote such an arc with [a, b]. Also, we
use the following notation: (a, b] = [a, b] \ {a}, [a, b) = [a, b] \ {b}, and
(a, b) = [a, b] \ {a, b}.

Let x ∈ End(D). Then for each pair of distinct points a, b ∈ D,
x ∈ [a, b] implies x = a or x = b.

For each A ∈ 2D there exists a unique subcontinuum of D, Dmin(A) ∈
C(D), such that Dmin(A) is irreducible about A,

Dmin(A) =
∩

{B ∈ C(D) : A ⊂ B} .
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Proposition 3.3. For each A ∈ 2D, Dmin(A) = ∪a,b∈A[a, b].

It is not di�cult to prove Proposition 3.3.

We refer to Dmin(A) as the minimal subdendrite of D that contains
A ∈ 2D.

Let φ : 2D → C(D) de�ned by φ(A) = Dmin(A).

Theorem 3.4. The function φ : 2D → C(D) is continuous.

Theorem 3.4 is proved in [8].

Other properties of the mapping φ : 2D → C(D) are the following:

• Let a, b ∈ D, a ̸= b. Then φ({a}) = {a} and φ({a, b}) = [a, b].
• If A ∈ 2D is �nite, then φ(A) is a tree.
• For each A ∈ 2D, End(φ(A)) ⊂ A.
• For each A ∈ C(D), φ(A) = A.

Proposition 3.5 contains some results already known (see [9] and [16]).
Most of them are consequences of Theorem 3.4.

Proposition 3.5. Let a, b ∈ D, a ̸= b. Let {an} and {bn} be two se-

quences of points in D such that limn→∞an = a and limn→∞bn = b.

• For each ε > 0, there is δ > 0 such that if d(a, b) < δ, then

diam([a, b]) < ε.
• limn→∞ diam ([an, a]) = 0.
• For every ε > 0, there exists δ > 0 such that for any pair of points

u and v in D, if d(a, u) < δ and d(b, v) < δ, then Hd([a, b], [u, v]) <
ε.

• lim[an, bn] = [a, b].
• For each point x ∈ (a, b), there exists δ > 0 such that for each pair

of points u and v in D with d(a, u) < δ and d(b, v) < δ, x ∈ [u, v].
• For each arc [s, t] ⊂ [a, b], {s, t} ∩ {a, b} = ∅, there exists δ > 0
such that for each pair of points u and v in D with d(a, u) < δ
and d(b, v) < δ, [s, t] ⊂ [u, v].

• For each arc [s, t] ⊂ [a, b], {s, t} ∩ {a, b} = ∅, there exists n0 ∈ N
such that for each n ≥ n0, [s, t] ⊂ [an, bn].

4. Dynamics of Dendrite Homeomorphisms

We collect in this section some basic properties of dendrite homeomor-
phisms. Let D = (D, d) be a nondegenerate dendrite.

Proposition 4.1. Let f : D → D be a homeomorphism. Then for each

arc [a, b] contained in D, f([a, b]) = [f(a), f(b)].

The proof of Proposition 4.1 can be found in [16].
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Corollary 4.2. Let φ : 2D → C(D) given by φ(A) = Dmin(A). Let

f : D → D be a homeomorphism.

• Then for each A ∈ 2D, φ(f(A)) = f(φ(A)).
• If A ∈ 2D is strongly invariant under f , then Dmin(A) is strongly
invariant under f as well.

In particular, for every x ∈ D, Dmin(α(x, f) ∪ ω(x, f)) is

strongly invariant under f .

Proof. The �rst part follows from Proposition 3.3 and Proposition 4.1.

The second part of the corollary is immediate from the �rst part. �
Proposition 4.3. Let f : D → D be a homeomorphism. Let a, b ∈ D be

two distinct points such that f(a) = a and f(b) = b. Then for each point

x in the arc [a, b], card(ω(x, f)) = 1 and card(α(x, f)) = 1. Furthermore,

if Fix(f) ∩ (a, b) = ∅, then one of the following two conditions holds.

(1) For every x ∈ (a, b), α(x, f) = {a} and ω(x, f) = {b}, or
(2) for every x ∈ (a, b), α(x, f) = {b} and ω(x, f) = {a}.

Proposition 4.3 is proved in [9].

Corollary 4.4. Let f : D → D be a homeomorphism. Let a, b ∈ D,

a ̸= b, be periodic points of f . Then for each x ∈ [a, b], card(α(x, f)) and
card(ω(x, f)) are �nite.

Proof. Let a, b ∈ Per(f) be two points of periods n and m, respectively.
Let N = m · n. Then fN (a) = a and fN (b) = b.
According to Proposition 4.3, for each x ∈ [a, b],

card(ω(x, fN )) = 1 and card(α(x, fN )) = 1.

The result is an immediate consequence of Proposition 2.1. �
Theorem 4.5. Let f : D → D be a homeomorphism and x ∈ D. Then

ω(x, f) is either a periodic orbit or a Cantor set. Moreover, if ω(x, f) is

a Cantor set, then f restricted to ω(x, f) is an adding machine.

Theorem 4.5 is proved in [2].

According to Theorem 4.5, for each x ∈ D, ω(x, f) is a minimal set of
f provided that f : D → D is a dendrite homeomorphism. Therefore, in
this context, every limit set ω(x, f) is contained in the set R(f). Thus,

R(f) = Λ(f) = ∪{ω(x, f) : x ∈ X} .
Proposition 4.6 and Corollary 4.7 are immediate consequences of The-

orem 4.5.

Proposition 4.6. Let f : D → D be a homeomorphism and let x ∈ D.

Then
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• f(α(x, f)) = α(x, f);
• α(x, f) is a minimal set of f .

Corollary 4.7. Let f : D → D be a homeomorphism and let x ∈ D.

• Then x ∈ ω(x, f) if and only if x ∈ α(x, f).
• If x /∈ ω(x, f)∪α(x, f), then for every y ∈ D, x /∈ ω(y, f)∪α(y, f).

Proposition 4.8. Let f : D → D be a homeomorphism. Then

R(f) = Λ(f) = cl(Per(f)).

Proposition 4.8 is proved in [16].

Proposition 4.9. Let f : D → D be a homeomorphism. Let x, z ∈ D. If

z ∈ Dmin(α(x, f) ∪ ω(x, f)) \ (α(x, f) ∪ ω(x, f)),

then card(ω(z, f)) and card(α(z, f)) are �nite.

Proof. Since z ∈ Dmin(α(x, f) ∪ ω(x, f)) \ (α(x, f) ∪ ω(x, f)), there exist
two points a and b in α(x, f) ∪ ω(x, f) such that z ∈ (a, b). Note that
a, b ∈ R(f). By Proposition 3.5 and Proposition 4.8, there exist p, q ∈
Per(f) such that z ∈ [p, q].

Therefore, by Corollary 4.4, card(ω(z, f)) and card(α(z, f)) are �nite.
�

Corollary 4.10. Let f : D → D be a homeomorphism. Let x ∈ D be a

point such that cardinality of ω(x, f) is in�nite. Then x ∈ Dmin(α(x, f)∪
ω(x, f)) if and only if x ∈ α(x, f) ∪ ω(x, f).

Proof. The result is immediate from Proposition 4.9. �
Proposition 4.11 is proved in [16].

Proposition 4.11. Let f : D → D be a homeomorphism. Let x ∈
D be a point such that ω(x, f) is in�nite. Let a ∈ Fix(f) such that

[a, x] ∩ Fix(f) = {a}. Then there exists u ∈ (a, x] such that u ∈ ω(x, f).
Furthermore, if u ̸= x, then there exists a sequence {N1 < N2 < N3 <
· · · } ⊂ N such that for each pair i, j ∈ N, i ̸= j,

[fNi(u), fNi(x)] ∩ [fNj (u), fNj (x)] = ∅.

Corollary 4.12. Let f : D → D be a homeomorphism. Let x ∈ D be a

point such that cardinality of ω(x, f) is in�nite. Then ω(x, f) = α(x, f).

Proof. Let x ∈ D such that card(ω(x, f)) = ∞.
Limit sets ω(x, f) and α(x, f) are strongly invariant under f , and they

are minimal sets of f . If x ∈ ω(x, f), the result is immediate.
Assume x /∈ ω(x, f). Let a ∈ Fix(f) such that [a, x] ∩ Fix(f) = {a}.

According to Proposition 4.11, there exist u ∈ (a, x] such that u ∈ ω(x, f),
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and a sequence {N1 < N2 < N3 < · · · } ⊂ N such that for each pair
i, j ∈ N, i ̸= j,

(4.1) [fNi(u), fNi(x)] ∩ [fNj (u), fNj (x)] = ∅.
Since ω(x, f) is a minimal set, it follows that

α(u, f) = ω(u, f) = ω(x, f).

Let i, j ∈ N, i ̸= j. By equation (4.1), and considering homeomorphism
f−(Ni+Nj) : D → D, we have that

(4.2) [f−Ni(u), f−Ni(x)] ∩ [f−Nj (u), f−Nj (x)] = ∅
as well.

Therefore, by Proposition 3.2,

lim
i→∞

diam([f−Ni(u), f−Ni(x)]) = 0.

Hence, α(x, f) ∩ α(u, f) ̸= ∅ and ω(x, f) = ω(u, f) = α(u, f) = α(x, f).
�

Corollary 4.13. Let f : D → D be a homeomorphism. Let x ∈ D be a

point such that cardinality of α(x, f) is in�nite. Then ω(x, f) = α(x, f).

Proof. Since f−1 : D → D is a homeomorphism,

α(x, f) = ω(x, f−1) = α(x, f−1) = ω(x, f).

Thus, ω(x, f) = α(x, f). �
Corollary 4.14. Let f : D → D be a homeomorphism and x ∈ D. Then

ω(x, f) is �nite if and only if α(x, f) is �nite.

The proof of Corollary 4.14 is immediate from corollaries 4.12 and 4.13.

Proposition 4.15. Let f : D → D be a homeomorphism. Let x0 ∈ D,

a ∈ Fix(f), x0 ̸= a.

• If [a, x0] ⊂ [a, f(x0)], then there exists a point b ∈ Fix(f), a ̸= b,
such that limn→∞ fn(x0) = b and for each n ∈ Z, fn(x0) ∈ [a, b].

• If [a, f(x0)] ⊂ [a, x0], then there exists a point b ∈ Fix(f), a ̸= b,
such that limn→∞ f−n(x0) = b and for each n ∈ Z, fn(x0) ∈
[a, b].

Proposition 4.15 is proved in [16].

Note that in either of the cases considered in Proposition 4.15, for each
point x ∈ [a, b], we have that card(ω(x, f)) = 1 and card(α(x, f)) = 1.
Corollary 4.16 is an immediate consequence of Proposition 4.15. See also
[1, Lemma 2.7].

Corollary 4.16. Let f : D → D be a homeomorphism. Let x0 ∈ D,

a ∈ Fix(f), x0 ̸= a. If for some N ∈ N, either
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• [a, x0] ⊂ [a, fN (x0)], or
• [a, fN (x0)] ⊂ [a, x0],

holds, then for every x ∈ [a, x0], card(ω(x, f)) and card(α(x, f)) are

�nite.

Proposition 4.17. Let f : D → D be a homeomorphism. Let a, b ∈
Fix(f), a ̸= b. If a and b are end points of D and card(Fix(f)) = 2,
then one of the following two conditions holds:

(1) For every x ∈ D \ {a, b}, α(x, f) = {a} and ω(x, f) = {b}.
(2) For every x ∈ D \ {a, b}, α(x, f) = {b} and ω(x, f) = {a}.

Proposition 4.17 is proved in [9].

Proposition 4.18. Let f : D → D be a homeomorphism. Let x ∈ D.

Then

• any arc in D contains at most two points of ω(x, f);
• End(Dmin(ω(x, f))) = ω(x, f).

Proposition 4.18 is proved in [1].

Lemma 4.19. Let f : D → D be a homeomorphism. Let x ∈ D such that

ω(x, f) = α(x, f) = {a}, a ̸= x. Then for each n ∈ N, [a, x]∩ [a, fn(x)] =
{a}.

Proof. Assume that there exists k ∈ N such that

(4.3) [a, x] ∩ [a, fk(x)] = [a, u],

with a ̸= u.
If u = x, then [a, x] ⊂ [a, fk(x)]. By Proposition 4.15, there exists a

point b ∈ Fix(fk), a ̸= b, such that limn→∞ fnk(x0) = b. This contradicts
the assumption that ω(x, f) = {a}.

From now on we consider u ̸= x.
Since u ∈ [a, x] and a ∈ Fix(f), then fk(u) ∈ [a, fk(x)]. Therefore,

by (4.3), points a, u, and fk(u) are in the arc [a, fk(x)]. We have two
options:

[a, u] ⊂ [a, fk(u)] or [a, fk(u)] ⊂ [a, u].

If [a, u] ⊂ [a, fk(u)], then for each n ∈ N, we have that

[a, u] ⊂ [a, fk(u)] ⊂ [a, fnk(u)] ⊂ [a, fnk(x)].

Hence, limn→∞ fnk(x) is not a. A contradiction.
Now consider the case [a, fk(u)] ⊂ [a, u]. By (4.3), [a, fk(u)] ⊂ [a, u] ⊂

[a, x]. It follows that

[a, u] ⊂ [a, f−k(u)] ⊂ [a, f−k(x)].
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Hence, for each n ∈ N,

[a, u] ⊂ [a, f−k(u)] ⊂ [a, f−nk(u)] ⊂ [a, f−nk(x)].

Thus, limn→∞ f−nk(x) is not a. This contradicts the assumption that
α(x, f) = {a}. Then for each n ∈ N, [a, x] ∩ [a, fn(x)] = {a}. �

Corollary 4.20. Let f : D → D be a homeomorphism. Let x ∈ D be a

point such that ω(x, f) = α(x, f) = {a}, a ̸= x. Then for each n,m ∈ Z,
n ̸= m, [a, fn(x)]∩ [a, fm(x)] = {a}. Furthermore, A = ∪n∈Z[a, f

n(x)] is
a subdendrite of D strongly invariant under f .

The proof of Corollary 4.20 is immediate from Lemma 4.19.

Proposition 4.21. Let f : D → D be a dendrite homeomorphism. Let

x0 be a point of D that it is not a recurrent point, x0 ∈ D \R(f). Let U
be the component of D \R(f) that contains x0. Then for each x ∈ U ,

α(x, f) = α(x0, f) and ω(x, f) = ω(x0, f).

Proposition 4.21 is proved in [9].

5. Topological Entropy

In this section we recall the de�nition of topological entropy and some
of its basic properties. Let X = (X, d) denote a nondegenerate compact
metric space. Let f : X → X be a mapping.

Let ε > 0 and n ∈ N. A subset A ⊂ X is said to (n, ε)-span X if for
any x ∈ X there exists a ∈ A with

d(f i(x), f i(a)) < ε, for 0 ≤ i ≤ n− 1.

Let r(n, ε) denote the smallest cardinality of any (n, ε)-spanning set
for X. Let

r(ε, f) = lim sup
n→∞

(
1

n

)
log(r(n, ε)).

The topological entropy of f is given by

ent(f) = lim
ε→0

r(ε, f).

Note that for each ε > 0, r(ε, f) ≤ ent(f). See [6].

Proposition 5.1. Let M1,M2, . . . ,Mk be k closed non empty subsets of

X. If all of them are invariant under f and X = M1 ∪ M2 ∪ · · · ∪ Mk,

then ent(f) = max{ent(f |Mi
) : 1 ≤ i ≤ k}.

The proof of Proposition 5.1 can be found in [4], [5], [6], and [17]

According to [4], the next more general claim is true.
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Proposition 5.2. If X is the union of {Mt : t ∈ T}, where each Mt is

closed nonempty and invariant under f , then ent(f) = sup{ent(f |Mt) :
t ∈ T}.
Corollary 5.3. Let A ⊂ X be a closed and invariant set of f : X → X.

Then ent(f) ≥ ent(f |A ).

The proof of Corollary 5.3 is immediate from Proposition 5.1.

Proposition 5.4. Let Y be a compact metric space. Let g : Y → Y be

a mapping and h : X → Y be a surjective mapping. If for every x ∈ X,

h(f(x)) = g(h(x)), then ent(f) ≥ ent(g). If h is a homeomorphism, then

ent(f) = ent(g).

The proof of Proposition 5.4 can be found in [4], [5], [6], and [17].

Lemma 5.5. Let M ⊂ X be a closed set invariant under f . Let x, y ∈ X
such that x ∈ M , y /∈ M , and limn→∞ d(fn(x), fn(y)) = 0. Let P =
M ∪ {fn(y) : n ≥ 0}. Then ent(f |M ) = ent(f |P ).
Proof. Notice that P is a closed subset of X invariant under f . Since
M ⊂ P , ent(f |M ) ≤ ent(f |P ).

Let ε > 0 and m ∈ N. Let n0 ∈ N such that d(fn(y), fn(x)) < ε
2 for

each n ≥ n0. Let E ⊂ M be an (m, ε
2 )-spanning set for f |M of cardinality

r(m, ε
2 , f |M ).

Let F = E ∪ {fn(y) : 0 ≤ n ≤ n0 − 1}. It follows that F is an (m, ε)-
spanning set for f |P . Then r(m, ε, f |P ) ≤ r(m, ε

2 , f |M ) + n0. Hence, for
each ε > 0, r(ε, f |P ) ≤ r( ε2 , f |M ) ≤ ent(f |M ). Therefore, ent(f |P ) ≤
ent(f |M ). �
Theorem 5.6. If f : D → D is a dendrite homeomorphism, then ent(f) =
0.

Theorem 5.6 is proved in [2].

Proposition 5.7. Let D and E be two dendrites. Let f : D → D,

g : E → E, and h : D → E be homeomorphisms such that for each x ∈ D,

h(f(x)) = g(h(x)). Let C(f) : C(D) → C(D), C(g) : C(E) → C(E), and
C(h) : C(D) → C(E) be the corresponding induced homeomorphisms.

Then

• For each A ∈ C(D), C(h)(C(f)(A)) = C(g)(C(h)(A)), and
• ent(C(f)) = ent(C(g)).

6. Entropy of the Induced Dendrite Homeomorphism
C(f) (First Part)

Let D denote a nondegenerate dendrite. Let f : D → D be a homeo-
morphism. Recall R(f) stands for the set of recurrent points of f .
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In this section, we prove the following:

• If there exists a point x ∈ D \R(f), such that x is not an element
of the minimal subcontinuum that contains α(x, f)∪ω(x, f), i.e.,
x /∈ Dmin(α(x, f) ∪ ω(x, f)), then ent(C(f)) = ∞.

Example 6.1 plays a key role in our argument.

Example 6.1. Let S be a dendrite contained in the complex plane C
de�ned in the following way:

• Let I0 = {z = t · ei(π
2 ) : 0 ≤ t ≤ 1} = {z = t · i : 0 ≤ t ≤ 1}.

• For each n ∈ N, let In = {z = t · ei(π−
π

n+2 ) : 0 ≤ t ≤ 1
n+1}.

• For each n ∈ N, let I−n = {z = t · ei(
π

n+2 ) : 0 ≤ t ≤ 1
n+1}.

Let S = ∪n∈ZIn. The vertex of S is 0, the beans of S are In, n ∈ Z.
Let g : S → S be the function de�ned by

• for each n ≥ 0, g(In) = In+1;

g(z) = g
(
t · ei(π−

π
n+2 )

)
=

n+ 1

n+ 2
· t · ei(π−

π
n+3 ), 0 ≤ t ≤ 1

n+ 1
.

• for each n ≥ 1, g(I−n) = I−n+1,

g(z) = g
(
t · ei(

π
n+2 )

)
=

n+ 1

n
· t · ei(

π
n+1 ), 0 ≤ t ≤ 1

n+ 1
.

The function g : S → S has the following properties:

• g : S → S is a homeomorphism.
• Fix(g) = {0} = Per(g) = R(g).
• For each pair n, k ∈ Z, gk(In) = In+k. In particular, for each

n ∈ Z, g(In) = In+1.
• For every x ∈ S, ω(x, g) = α(x, g) = {0}.
• The entropy of the homeomorphism C(g) : C(S) → C(S) is ∞.

This dendrite homeomorphism was introduced in [1]. Proofs of all
properties of it are in [1] as well.

From now on until the end of the section, let f : D → D be a dendrite
homeomorphism and let x0 ∈ D \R(f) be a point such that

x0 /∈ Dmin(α(x0, f) ∪ ω(x0, f)).

Consider the following equivalence relation in dendrite D:

• x ∼ y if and only if x, y ∈ Dmin(α(x0, f) ∪ ω(x0, f)).
• If x /∈ Dmin(α(x0, f) ∪ ω(x0, f)), then x ∼ y if and only if x = y.

Let E = D/ ∼ be the identi�cation space and let p : D → E be the
natural mapping. Since p : D → E is monotone, then E is a dendrite (see
[7]).

Let a = p(Dmin(α(x0, f) ∪ ω(x0, f))). Let F : E → E be the function
given by
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• F (a) = a.
• For each y ∈ E, y ̸= a, let F (y) = p(f(x)) where p(x) = y.

Note that Dmin(α(x0, f) ∪ ω(x0, f)) is strongly invariant under f . It
follows that F : E → E is a homeomorphism, and for each x ∈ D,
p(f(x)) = F (p(x)).

Since x0 /∈ Dmin(α(x0, f) ∪ ω(x0, f)), p(x0) ̸= a and

lim
n→∞

Fn(p(x0)) = a and lim
n→−∞

Fn(p(x0)) = a.

Therefore,

ω(p(x0), F ) = α(p(x0), F ) = {a}.

From now on let E = D/ ∼ and F : E→ E stand for the dendrite and
the homeomorphism de�ned above.

Proposition 6.2. The homeomorphism F : E → E enjoys the following

properties:

• For each pair n,m ∈ Z, n ̸= m,

[a, Fn(p(x0))] ∩ [a, Fm(p(x0))] = {a}.

• The union L = ∪n∈Z[a, F
n(p(x0))] is a subdendrite of E strongly

invariant under F .

Proof. Both results are immediate consequences of Lemma 4.19 and Corol-
lary 4.20. �

Corollary 6.3. Let u ∈ Dmin(α(x0, f) ∪ ω(x0, f)) such that

[x0, u] ∩Dmin(α(x0, f) ∪ ω(x0, f)) = {u}.

Then

• for each pair n,m ∈ Z, n ̸= m,

[fn(x0), f
n(u)) ∩ [fm(x0), f

m(u)) = ∅;

• J = Dmin(α(x0, f)∪ω(x0, f))∪(∪n∈Z[f
n(x0), f

n(u)]) is a dendrite

contained in D strongly invariant under f : D → D, p(J) = L,

and for each x ∈ J , p(f(x)) = F (p(x)).

Proof. The mapping p : D → E is monotone and J = p−1(L). Now the
result is an immediate consequence of Proposition 6.2. �

Proposition 6.4. Let S be the dendrite and let g : S → S be the home-

omorphism, both described in Example 6.1. Then there exists a homeo-

morphism h : L→ S such that for each y ∈ L, h(F (y)) = g(h(y)).
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Proof. Let h0 : [p(x0),a] → I0 be a homeomorphism such that

h0(a) = 0 and h0(p(x0)) = ei(
π
2 ).

For each n ∈ Z, let hn : [Fn(p(x0)),a] → In given by hn = gn◦h0◦F−n.
Let h : L→ S be the function given by

• h(a) = 0.
• Let y ∈ L, y ̸= a. There exists n ∈ Z, y ∈ [Fn(p(x0)),a]. Then
h(y) = hn(y).

It follows that h : L→ S is a homeomorphism.
Let y ∈ [Fn(p(x0)),a], then

h(F (y)) = gn+1 ◦ h0 ◦ F−(n+1)(F (y)) = gn+1 ◦ h0 ◦ F−n(y)

= g ◦ gn ◦ h0 ◦ F−n(y) = g(h(y)).

This completes the proof. �

Corollary 6.5. The topological entropy of C(F |L) : C(L) → C(L) is ∞.

Proof. Let S be the dendrite and let g : S → S be the homeomorphism
both described in Example 6.1.

According to Proposition 6.4, there exists a homeomorphism h : L→ S
such that for each y ∈ L, h(F (y)) = g(h(y)).

The induced mappings C(F |L) : C(L) → C(L), C(h) : C(L) → C(S),
and C(g) : C(S) → C(S) are homeomorphisms with the property that for
each A ∈ C(L),

C(h)(C(F |L)(A)) = C(g)(C(h)(A)).

Since ent(C(g)) = ∞, then ent(C(F |L)) = ∞. �

Corollary 6.6. Let J ⊂ D be the dendrite described in Corollary 6.3,

J = Dmin(α(x0, f) ∪ ω(x0, f)) ∪ (∪n∈Z[f
n(x0), f

n(u)]).

Then the topological entropy of C(f |J) : C(J) → C(J) is ∞.

Proof. Notice that f |J : J → J is a homeomorphism, and the natural
mapping p : J → L is monotone and onto. Then C(f |J) : C(J) → C(J)
is a homeomorphism and C(p) : C(J) → C(L) is a surjective map.

According to Corollary 6.3, for each x ∈ J , p(f(x)) = F (p(x)). Then
for each A ∈ C(J),

C(p)(C(f |J)(A)) = C(F |L)(C(p)(A)).

Since ent(C(F |L)) = ∞, then ent(C(f |J)) = ∞. �

Theorem 6.7 summarizes our work in this section.
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Theorem 6.7. Let f : D → D be a dendrite homeomorphism. If there

exists a point x0 ∈ D \R(f) such that

x0 /∈ Dmin(α(x0, f) ∪ ω(x0, f)),

then ent(C(f)) = ∞.

Proof. Let J ⊂ D be the dendrite described in Corollary 6.3,

J = Dmin(α(x0, f) ∪ ω(x0, f)) ∪ (∪n∈Z[f
n(x0), f

n(u)]).

This dendrite is strongly invariant under f : D → D. Then the hy-
perspace C(J) is a closed subset of C(D) strongly invariant under the
induced mapping C(f).

By Corollary 6.6,

ent(C(f)|C(J)) = ent(C(f |J)) = ∞.

It follows that ent(C(f)) = ∞. �

7. Entropy of the Induced Dendrite Homeomorphism
C(f) (Second Part)

Let D = (D, d) denote a nondegenerate dendrite. Let f : D → D be
a homeomorphism. Recall that according to Proposition 4.8, the set of
recurrent points R(f) is closed.

In this section, we prove the following:

• If R(f) = D, then ent(C(f)) = 0.
• If R(f) ̸= D and for every x ∈ D \ R(f), x ∈ Dmin(α(x, f) ∪
ω(x, f)), then ent(C(f)) = 0.

Theorem 7.1. Let f : D → D be a dendrite homeomorphism such that

R(f) = D. Then ent(2f ) = 0.

Theorem 7.1 is proved in [9].

Corollary 7.2. Let f : D → D be a dendrite homeomorphism such that

R(f) = D. Then ent(C(f)) = 0.

Proof. The hyperspace C(D) is a closed subset of 2D, and it is strongly
invariant under mapping 2f : 2D → 2D.

Hence, 0 ≤ ent(C(f)) = ent(2f |C(D)) ≤ ent(2f ) = 0. �
From now on until the end of the section, we assume the following

conditions:

• f : D → D is a homeomorphism.
• R(f) ̸= D.
• For each x0 ∈ D, x0 ∈ Dmin(α(x0, f) ∪ ω(x0, f)).

Proposition 7.3. Let U be a component of D \R(f). Then
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• there exists N ∈ N such that fN (U) = U ;

• there exist two distinct points a, b ∈ R(f) such that U = (a, b).

Proof. Let us prove the �rst part.
Let ∆ be the collection of all components of D \ R(f). If ∆ is �nite,

the result readily follows.
Assume the cardinality of ∆ is in�nite. Let U ∈ ∆. It is enough to

show that there exists N ∈ N such that fN (U) ∩ U ̸= ∅.
Assume that

(7.1) for every n ∈ N, fn(U) ∩ U = ∅.
Let x0 ∈ U . Since x0 /∈ R(f),

x0 ∈ Dmin(α(x0, f) ∪ ω(x0, f)) \ (α(x0, f) ∪ ω(x0, f)).

By Proposition 4.9, card(ω(x0)) and card(α(x0)) are �nite.
Hence, Dmin(α(x0, f) ∪ ω(x0, f)) is a tree.

Condition (7.1) implies that

(7.2) for each n,m ∈ Z, n ̸= m, fn(U) ∩ fm(U) = ∅.
It follows that

lim
n→∞

diam(fn(U)) = 0 and lim
n→∞

diam(fn(cl(U))) = 0.

Therefore, for each x ∈ cl(U), ω(x, f) = ω(x0, f).
Let y0 ∈ cl(U) \ U . Note that y0 ∈ R(f).
Since ω(y0, f) = ω(x0, f), y0 ∈ Dmin(α(x0, f) ∪ ω(x0, f)) and

[y0, x0] ⊂ Dmin(α(x0, f) ∪ ω(x0, f)).

Also, fk(y0) = y0, where k = card(ω(x0, f)).
The set U ∪ {y0} is connected. Hence, [y0, x0] ⊂ U ∪ {y0}, and (y0, x0]

is contained in U .
The collection of arcs {[y0, fn·k(x0)] : n ∈ Z} has the following proper-

ties:

• For each n ∈ Z, [y0, fn·k(x0)] ⊂ Dmin(α(x0, f) ∪ ω(x0, f)).
• According to condition (7.2), for every n,m ∈ Z, n ̸= m,

[y0, f
n·k(x0)] ∩ [y0, f

m·k(x0)] = {y0}.
Hence,

A =
∪

{[y0, fn·k(x0)] : n ∈ Z} ⊂ Dmin(α(x0, f) ∪ ω(x0, f)).

This is a contradiction. Thus, there exists N ∈ N such that fN (U)∩U ̸=
∅.

Now we prove the second part.

Let U be a component of D \R(f). Let N ∈ N such that fN (U) = U .
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Note that cl(U) is a dendrite strongly invariant under fN . Let a ∈
cl(U) such that fN (a) = a.

Let x0 ∈ U . It follows that for any n ∈ Z,

[a, fN ·n(x0)] ⊂ U ∪ {a}.
If [a, fN (x0)] ⊂ [a, x0], then by Proposition 4.15, there exists b ∈ D,

b ∈ Fix(fN ), b ̸= a, such that

lim
n→∞

fN ·n(x0) = a and lim
n→−∞

fN ·n(x0) = b.

In this case, we have [a, b] ⊂ U ∪ {a, b} and (a, b) ⊂ U .
If [a, x0] ⊂ [a, fN (x0)], then there exists b ∈ D, b ∈ Fix(fN ), b ̸= a,

such that

lim
n→∞

fN ·n(x0) = b and lim
n→−∞

fN ·n(x0) = a.

Again, we have that [a, b] ⊂ U ∪ {a, b} and (a, b) ⊂ U .
The case fN (x0) /∈ [a, x0] and x0 /∈ [a, fN (x0)] is impossible. Let us

see why.
Assume that fN (x0) /∈ [a, x0] and x0 /∈ [a, fN (x0)]. Since f

N (x0) ∈ U ,
[fN (x0), x0] ⊂ U . Let u ∈ [a, x0] such that

[fN (x0), u] ∩ [a, x0] = {u}.
Note that

(7.3) [fN (x0), u] ∪ [u, x0] = [fN (x0), x0].

It readily follows that u ̸= a.
By hypothesis,

x0 /∈ [a, fN (x0)] = [a, u] ∪ [fN (x0), u].

Hence, u ̸= x0. Therefore, the point u ∈ U has the following properties:

• [a, u] ∩ [u, x0] = {u}.
• [a, u] ∩ [u, fN (x0)] = {u}.
• [u, x0] ∩ [u, fN (x0)] = {u}.

That is, u is a branch point of D.
Now, from (7.3), we know that u ∈ [fN (x0), x0]. It implies that

u ∈ Dmin(α(x0, f) ∪ ω(x0, f)).

For every n ∈ Z, fN ·n(u) ∈ Dmin(α(x0, f) ∪ ω(x0, f)). And for every
n,m ∈ Z, n ̸= m, fN ·n(u) ̸= fN ·m(u). Then the tree Dmin(α(x0, f) ∪
ω(x0, f)) contains in�nitely many branch points. This is a contradiction.
Hence, we have proved that there exist two distinct points a, b ∈ cl(U)\U
such that

• (a, b) ⊂ U , and x0 ∈ (a, b);
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• for each x ∈ (a, b),

lim
n→∞

fN ·n(x) = a and lim
n→−∞

fN ·n(x) = b,

or for each x ∈ (a, b),

lim
n→∞

fN ·n(x) = b and lim
n→−∞

fN ·n(x) = a.

Either one of these two options implies that

{a, b} ⊂ Dmin(α(x0, f) ∪ ω(x0, f)).

Finally, let x ∈ U . We claim that x ∈ (a, b). If x /∈ (a, b), then with
a similar argument as the one described above, we �nd a branch point of
D in (a, b). It leads us to a contradiction. Thus, U = (a, b). �

Let U be a component of D \R(f). It is said that

• U is periodic of period 1 provided that f(U) = U .
• U is periodic of period k ≥ 2 provided that fk(U) = U and for
each 1 ≤ i ≤ k − 1, f i(U) ∩ U = ∅.

Notice that if U = (a, b) and f(U) = U , then f(a) = a and f(b) = b.
Furthermore, if U is of period k ∈ N, then fk(a) = a and fk(b) = b, and
o(a, f) ∩ o(b, f) = ∅.

Lemma 7.4. Let U0 be a component of D \ R(f) of period k ≥ 2. Let

Ui = f i(U0), 0 ≤ i ≤ k − 1.
Then there exists a homeomorphism l : D → D with the following

properties:

• For each x ∈ D \ (∪k−1
i=0 Ui), l(x) = f(x).

• For every x ∈ ∪k−1
i=0 Ui, l

k(x) = x. That is, x ∈ Per(l).

• R(l) = R(f) ∪ (∪k−1
i=0 Ui).

Proof. Let x0 ∈ U0, a0 = limn→∞ fk·n(x0), b0 = limn→−∞ fk·n(x0).
Then for each 0 ≤ i ≤ k − 1, Ui = (ai, bi), where ai = f i(a0) and

bi = f i(b0).
De�ne l : D → D as follows:

• If x ∈ Uk−1, l(x) = f1−k(x).
• If x ∈ D \ Uk−1, l(x) = f(x).

It is not di�cult to see that l : D → D is a homeomorphism that
holds the �rst and the second properties; in particular, for each point
x ∈ ∪k−1

i=0 Ui, l
k(x) = x.

The third part of the lemma, R(l) = R(f)∪(∪k−1
i=0 Ui), is immediate. �

Proposition 7.5. There exists a homeomorphism l : D → D with the

following properties:

• For every x ∈ R(f), l(x) = f(x).
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• The set of recurrent points of l is D, R(l) = D.

Proof. Let ∆ be the collection of all components of D \ R(f). There are
two cases: ∆ is �nite or ∆ is denumerable. We study the second case; the
�rst one is similar.

Let ∆ = {U1, U2, U3, . . .}. We assume that Ui ∩ Uj = ∅ if i ̸= j.
Notice that by Proposition 3.2, limn→∞ diam(Un) = 0.
Our argument has two parts. First, we produce a sequence of homeo-

morphisms {ln : D → D}∞n=1. Then we de�ne l : D → D as the limit of
that sequence.

Let k1 ∈ N be the period of component U1. If k1 = 1, let ∆1 = {U1}
and de�ne l1 : D → D as follows:

• For every x ∈ D \ U1, l1(x) = f(x).
• For every x ∈ U1, l1(x) = x.

Hence, l1 : D → D is a homeomorphism with the following properties:

• For every x ∈ R(f), l1(x) = f(x).
• R(l1) = R(f) ∪ U1.

If k1 ≥ 2, let ∆1 = {U1, f(U1), f
2(U1), . . . , f

k1−1(U1)} and ∪∆1 =

∪k1−1
j=0 f j(U1).
Let l1 : D → D be the homeomorphism we obtain after we follow

the procedure described in Lemma 7.4. This homeomorphism has the
following properties:

• For each x ∈ D \ (∪∆1), l1(x) = f(x).

• For every x ∈ ∪∆1, l
k1
1 (x) = x.

• R(l1) = R(f) ∪ (∪∆1).
• For each x ∈ R(f), l1(x) = f(x).

Now let n2 = min{i ∈ N : Ui ∈ ∆ \∆1}. Consider the component Un2

and let k2 be its period. Let ∆2 = {Un2} if k2 = 1; or let

∆2 = {Un2
, f(Un2

), f2(Un2
), . . . , fk2−1(Un2

)}

if k2 ≥ 2.
From the homeomorphism l1 : D → D, by Lemma 7.4, we obtain a

new homeomorphism l2 : D → D with these properties:

• For each x ∈ D \ (∪∆2), l2(x) = l1(x).

• For every x ∈ ∪∆2, l
k2
2 (x) = x.

• R(l2) = R(l1) ∪ (∪∆2).
• For each x ∈ R(f), l2(x) = f(x).

Following this procedure, we obtain a sequence of sets {∆n : n ∈ N}
and a sequence of homeomorphisms {ln : D → D : n ∈ N}. They enjoy
these properties:
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• For each j ∈ N, there exists n ∈ N such that Uj ∈ ∆n. Thus,
∆ = ∪∞

n=1∆n.
• For each n ∈ N, R(f) ⊂ R(ln) ⊂ R(ln+1).
• For each ε > 0, there exists j0 ∈ N such that

max {diam(U) : U ∈ ∆ \ (∆1 ∪∆2 ∪ · · · ∪∆j0)} < ε.

Then, in the Hausdor� metric,

limR(ln) = D.

• For every point x ∈ R(f) and for every n ∈ N, ln(x) = f(x).

Another consequence is this one. Let x0 ∈ D \ R(f). There exists an
open component U ∈ ∆, x0 ∈ U . Hence, there exists n0 ∈ N such that
for every n ≥ n0,

ln(x) = ln0
(x), for every x ∈ U.

Then, in particular, limn→∞ ln(x0) does exist.
Finally, let l : D → D be the function given in this way:

• For each x ∈ R(f), let l(x) = f(x).
• For each x ∈ D \R(f), let l(x) = limn→∞ ln(x).

Notice that for each ε > 0, there exists n0 ∈ N such that for every
n ≥ n0,

max {d(ln(x), l(x)) : x ∈ D} < ε.

It follows that l : D → D is a homeomorphism and R(l) = D. �

Proposition 7.6. Let Γ = {L ∈ C(D) : End(L) ⊂ R(f)}. Then

• Γ is a closed subset of C(D).
• Γ is invariant under C(f).

Proof. The set of recurrent points of f , R(f), is a closed subset of D.
Hence, 2R(f) is a closed subset of hyperspace 2D.

According to Theorem 3.4, function φ : 2D → C(D), φ(A) = Dmin(A),
is continuous. Let

Θ = φ(2R(f)) = {φ(A) : A ∈ 2R(f)}.

Claim. Γ = Θ.
Let L ∈ Γ. Since End(L) ⊂ R(f) and L = φ(cl(End(L))), then L ∈ Θ.
On the other hand, let us assume L ∈ Θ. Since L = φ(A) for some

A ∈ 2R(f), then End(L) ⊂ A. Thus, L ∈ Γ. We conclude that Γ = Θ.

Now we prove the second part of the Proposition. Let L ∈ Γ.

The set of recurrent points R(f) is strongly invariant under f . Since
f : D → D is a homeomorphism, f(End(L)) = End(f(L)). Hence,
End(f(L)) ⊂ R(f). It follows that f(L) ∈ Γ. �
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Proposition 7.7. Let Γ = {L ∈ C(D) : End(L) ⊂ R(f)}. Then

ent(C(f)|Γ) = 0.

Proof. By Proposition 7.5, there exists a homeomorphism l : D → D with
the following three properties:

• For each x ∈ R(f), l(x) = f(x).
• The set of recurrent points of l is D, R(l) = D.
• By Corollary 7.2, ent(C(l)) = 0.

Let L ∈ Γ. Since cl(End(L)) ⊂ R(f),

f(cl(End(L))) = l(cl(End(L))).

Now, using Corollary 4.2,

f(L) = Dmin(f(cl(End(L))))
= Dmin(l(cl(End(L)))) = l(L).

Therefore, C(f)|Γ = C(l)|Γ.
It follows that ent(C(f)|Γ) = ent(C(l)|Γ) = ent(C(l)) = 0. �

Proposition 7.8. Let Γ = {L ∈ C(D) : End(L) ⊂ R(f)}. Let A ∈ C(D)
such that A /∈ Γ. Then there exists B ∈ Γ such that

lim
n→∞

H(C(f)n(B), C(f)n(A)) = 0.

Proof. Let A ∈ C(D) \ Γ. Let ∆ = {U1, U2, U3, . . .} be the collection of
all components of D \R(f).

Case 1. There exists U ∈ ∆ such that A ⊂ cl(U).
Let k ∈ N be the period U . Let a, b ∈ D such that cl(U) = [a, b], and

for every x ∈ U ,

lim
n→∞

fk·n(x) = a and lim
n→−∞

fk·n(x) = b.

Notice that A is a point or an arc contained in [a, b]. Also [a, b] ∈ Γ.
If b /∈ A, then

lim
n→∞

H(C(f)k·n({a}), C(f)k·n(A)) = 0.

Let B = {a}. Then limn→∞ H(C(f)n(B), C(f)n(A)) = 0.
If b ∈ A, then A = [c, b] with c ∈ (a, b). Let B = [a, b]. Then

lim
n→∞

H(C(f)k·n(B), C(f)k·n(A)) = 0.

And again, it follows that limn→∞ H(C(f)n(B), C(f)n(A)) = 0.

Case 2. For each U ∈ ∆, A is not contained in cl(U).
In this case, we have that A ∩ R(f) ̸= ∅. Let L = Dmin(A ∩ R(f)).

Hence, L ⊂ A and L ∈ Γ.
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Let ∆′ be the collection of all elements U of ∆ such that A ∩ U ̸= ∅
and cl(U) is not contained in A.

∆′ = {W1,W2, . . .}, Wi ∩Wj = ∅, if i ̸= j.

From now on, we assume ∆′ is denumerable. The proof of the �nite
case follows a similar argument.

For each j ∈ N consider Wj ∈ ∆′. Let x ∈ Wj , let kj be the period of
Wj , and let

aj = lim
n→∞

fkj ·n(x) and bj = lim
n→−∞

fkj ·n(x).

Hence, Wj = (aj , bj).
Let

• Lj = [aj , bj ], if bj ∈ L.
• Lj = {aj}, if aj ∈ L.
• B = L ∪ (∪∞

j=1)Lj .

Note the following:

• For each j ∈ N, Lj ∩ L ̸= ∅. Since limj→∞ diam(Lj) = 0, B is a
closed subset of D.

• For each m ∈ N, Bm = L ∪ (∪m
j=1)Lj is a dendrite. Furthermore,

Bm ∈ Γ.
• Since limBm = B, B ∈ Γ.

Claim. limn→∞ H(C(f)n(B), C(f)n(A)) = 0.
Let ε > 0. There exist only �nitely many elements of ∆, say

{Un1
, Un2

, . . . , Uns
},

with diameter ≥ ε.
Then there are �nitely many elements of collection ∆′, say

{Wm1 ,Wm2 , . . . ,Wml
},

where

o(Wmt
, C(f)) ∩ {Un1

, Un2
, . . . , Uns

} ̸= ∅, 1 ≤ t ≤ l.

For each 1 ≤ t ≤ l, Amt
= A ∩ cl(Wmt

) is an arc with this property:

lim
n→∞

H(C(f)n(Lmt), C(f)n(Amt)) = 0.

There exists n0 ∈ N such that for every n ≥ n0 and for very 1 ≤ t ≤ l,

H(C(f)n(Lmt), C(f)n(Amt)) < ε.

Hence, for every n ≥ n0,

H(C(f)n(L ∪ (∪l
t=1Lmt

)), C(f)n(L ∪ (∪l
t=1Amt

))) < ε.
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Now, let Wm ∈ ∆′ \{Wm1 ,Wm2 , . . . ,Wml
}. Note that for every n ∈ N,

diam(C(f)n(cl(Wm))) < ε.

Since both Am = A∩ cl(Wm) and the corresponding Lm are contained
in cl(Wm),

H(C(f)n(Lm), C(f)n(Am)) < ε, for every n ∈ N.
Since B = L ∪ (∪∞

j=1)Lj and A = L ∪ (∪∞
j=1)Aj , Aj = A ∩ cl(Wj), we

have that for every n ≥ n0, H((C(f)n(B), C(f)n(A))) < ε. �
The following result summarizes our work in this section.

Theorem 7.9. Let f : D → D be a dendrite homeomorphism such that

R(f) ̸= D. If for each x0 ∈ D \R(f),

x0 ∈ Dmin(α(x0, f) ∪ ω(x0, f)),

then ent(C(f)) = 0.

Proof. Let Γ = {L ∈ C(D) : End(L) ⊂ R(f)}. Let A ∈ C(D) \ Γ.
By Proposition 7.8, there exists B ∈ Γ such that

lim
n→∞

H(C(f)n(B), C(f)n(A)) = 0.

Hence, Γ ∪ o(A,C(f)) is a closed subset of C(D) invariant under C(f).
By Lemma 5.5,

ent(C(f)|Γ∪o(A,C(f))) = ent(C(f)|Γ) = 0.

Notice that

C(D) = ∪{Γ ∪ o(A,C(f)) : A ∈ C(D) \ Γ}.
Then

ent(C(f)) = sup{ent(C(f)|Γ∪o(A,C(f))) : A ∈ C(D) \ Γ} = 0. �

8. Coda

Let D be a nondegenerate dendrite. Let f : D → D be a home-
omorphism. Our goal in this short section is to show that conditions
End(D) ⊂ R(f) and ent(C(f)) = 0 are equivalent.

Proposition 8.1. If for every x ∈ D, x ∈ Dmin(α(x, f) ∪ ω(x, f)), then
End(D) ⊂ R(f).

Proof. Let x ∈ End(D). Since x ∈ Dmin(α(x, f) ∪ ω(x, f)), there exist a
and b in the union α(x, f) ∪ ω(x, f) such that x ∈ [a, b].

It follows that x = a or x = b. Thus, x ∈ R(f). �
Proposition 8.2. If End(D) ⊂ R(f), then for every x ∈ D,

x ∈ Dmin(α(x, f) ∪ ω(x, f)).
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Proof. Assume, to the contrary, that there exists x0 ∈ D such that

x0 /∈ Dmin(α(x0, f) ∪ ω(x0, f)).

It follows that x0 /∈ R(f) and x0 /∈ End(D).
By Corollary 6.3, there exists a ∈ Dmin(α(x0, f) ∪ ω(x0, f)) such that

• [x0, a] ∩Dmin(α(x0, f) ∪ ω(x0, f)) = {a}, and
• for each pair n,m ∈ Z, n ̸= m,

[fn(x0), f
n(a)) ∩ [fm(x0), f

m(a)) = ∅.
Let u, v ∈ End(D) such that x0 ∈ [u, v]. Then

[u, x0] ∩ [x0, a] = {x0} or [v, x0] ∩ [x0, a] = {x0}.
Let us assume that [u, x0]∩ [x0, a] = {x0}. Then [u, x0]∪ [x0, a] = [u, a]

is an arc such that x0 ∈ (u, a). It follows that u /∈ Dmin(α(x0, f) ∪
ω(x0, f)).

Since for each n ∈ Z, fn(x0) /∈ Dmin(α(x0, f) ∪ ω(x0, f)) and

fn(Dmin(α(x0, f) ∪ ω(x0, f))) = Dmin(α(x0, f) ∪ ω(x0, f)),

we have that

• [u, a] ∩Dmin(α(x0, f) ∪ ω(x0, f)) = {a}, and
• for each pair n,m ∈ Z, n ̸= m,

[fn(u), fn(a)) ∩ [fm(u), fm(a)) = ∅.
Therefore, u ∈ R(f), u /∈ Dmin(α(x0, f) ∪ ω(x0, f)) and

α(u, f) ∪ ω(u, f) ⊂ Dmin(α(x0, f) ∪ ω(x0, f)).

This is a contradiction. �

Corollary 8.3. End(D) ⊂ R(f) if and only if ent(C(f)) = 0.

Proof. The result is an immediate consequence of theorems 6.7 and 7.9
and of propositions 8.1 and 8.2. �
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