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ENTROPY OF INDUCED DENDRITE
HOMEOMORPHISM C(f) : C(D) — C(D)

PALOMA HERNANDEZ AND HECTOR MENDEZ

ABsTrRACT. Let f : D — D be a dendrite homeomorphism. Let
C(D) denote the hyperspace of all subcontinua of D endowed with
the Hausdorff metric. Let C(f) : C(D) — C(D) be the induced
homeomorphism in hyperspace C(D). We show in this paper that
the topological entropy of C(f) has only two possible values: 0 or
00. Also we show that the entropy of C(f) is oo if and only if there
exists a point « € D such that x is not an element of the minimal
subdendrite of D that contains the union a(z, f) Uw(z, f).

1. INTRODUCTION AND SOME DEFINITIONS

A continuum is a nonempty compact and connected metric space.

Let X = (X,d) be a continuum. Let 2% be the collection of all
nonempty compact subsets of X endowed with the Hausdorff metric Hy
induced by metric d. Each nonempty subset of 2%, with the corresponding
restriction of Hy, is a hyperspace.

If Y is a continuum and Y C X, then Y is a subcontinuum of X. Let
C(X) denote the hyperspace of all subcontinua of X. Hyperspaces 2%
and C(X) are continua as well; see [15].

A continuum X is an arc if it is homeomorphic to the unit interval
[0,1] C R, a simple closed curve provided that it is homeomorphic to the
circle S = {x2 +9% = 1} C R?, a graph if it can be written as the union
of finitely many arcs any two of which either are disjoint or intersect only
in one or both of their end points, a tree if it is a graph which contains no
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simple closed curve, and a dendrite provided that it is locally connected
and contains no simple closed curve.

Let N denote the set of all positive integers. A mapping is a continuous
function. In section 5, we recall the definition and some properties of the
topological entropy of a mapping f: X — X.

Let 27 : 2X — 2% be the mapping induced in 2X by f: X — X. For
each n € N and for each A € 2%, (27)" (4) = f"(A). Let C(f) : C(X) —
C(X) be the restriction of 27 to hyperspace C(X). If f: X — X is a
homeomorphism, then both 2/ and C(f) are homeomorphisms; see [15].
It is known that if D is a dendrite and f : D — D is a homeomorphism,
then entropy of f is 0; see [2].

In 2010, Merek Lampart and Peter Raith [12] proved that if X is an
arc and f : X — X is a homeomorphism, then the topological entropy
of C(f) is 0. In 2013, Mykola Matviichuk [14] proved that for any tree
homeomorphism f : X — X the topological entropy of C(f) is 0 as
well. In 2009, Gerardo Acosta, Alejandro Illanes, and Héctor Méndez-
Lango [3] produced an example of a dendrite D and a homeomorphism,
f: D — D, where the topological entropy of the induced map C(f) is co.
Recently, in 2016, Haithem Abouda and Issam Naghmouchi [1] introduced
another dendrite homeomorphism f : D — D, where the mapping C(f)
has infinite topological entropy.

Let f : X — X be a homeomorphism. The limit sets «a(z, f) and
w(z, f) are defined in section 2.

Our main result in this note is the following: Let D be a dendrite and
f:D — D be a homeomorphism. Then

e the topological entropy of C(f) : C(D) — C(D) has only two
possible values: 0 or oo;

e the topological entropy of C(f) : C(D) — C(D) is oo if and only
if there exists a point * € D such that x is not an element of
the minimal subcontinuum of D that contains the union «a(x, f)U

w(z, f)-
2. PRELIMINARY RESULTS

Let X = (X,d) be a compact metric space that contains more than
one point. Let f : X — X be a mapping. Given a point z in X, the orbit
of x under f is the sequence

o(z, f) ={f"(z) :n > 0},
where f° denotes the identity map in X, f! = f, and for each n € N,
it = fo fm. If there exists n € N with f"(x) = z, then x is a periodic
point of f. If f(x) = =, then z is a fived point of f. Let Per(f) and
Fix(f) denote the set of all periodic points and of all fixed points of f,
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respectively. If © € Per(f), then ng = min{n € N: f"(z) = x} is the
period of x.
The omega limit set of x under f is the set

w(m,f):{yeX:H{m<n2<--~}chith ilirgof"i(x):y}.

If € w(x, f), then it is said that x is a recurrent point of f. Let R(f)
denote the set of all recurrent points of f. Let A(f) = U{w(z, f) : 2 € X}.
Note that

Fix(f) C Per(f) C R(f) C A(f).
If f: X — X is a homeomorphism, the alpha limit set of x under f is
the set
a(z, f) = w(z, f7).
A nonempty subset A C X is invariant under f : X — X if f(A) C A4;
it is strongly invariant provided that f(A) = A. An invariant subset A is
a minimal set of f provided that A = w(a, f) for every point a € A.

Proposition 2.1 contains some basic properties of w(zx, f). See [5].

Proposition 2.1. Let x,y € X, then

o w(z, f) is closed and nonempty;

o w(x, f) is strongly invariant under f;

e for each open set U C X with w(zx, f) C U, there exists ng € N
such that for every n > ng, f*(x) € U;

e for eachm €N, f(w(z, [™)) =w(f(x), f");

o for each m € N,

w(z, f) = wz, fr)Uw(f(e), YU Uw(f" (), f™).
Thus, w(x, f) is finite if and only if for some m € N, w(z, f™) is
finite;
o if for some N € N, w(z, fV) = w(y, ), then w(x, f) = w(y, f);
o if lim, d(fn('r)7 fn(y)) =0, then w(x, f) = w(y7 f)?
o if card(w(z, f)) is finite, say N, then there exists y € Per(f) of
period N with w(z, f) = {y, f(v), F*(v),- .-, N () }-

Let ¢ > 0. Then B(z,¢e) denotes the open ball around = € X with
radius €. If A C X, then the symbols cl(A), int(A), and bd(A) stand for
the closure, the interior, and the boundary of A in X.

Furthermore, if A £ 0,

N(A,e)={ye X : thereisx € A, d(y,z) <e} =U{B(x,e): x € A},

and diam(A) = sup{d(z,y) : ,y € A}. The symbol card(A) stands for
the cardinality of A.
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Let A and B be two elements of 2%. Then
Hy(A,B)=inf{e >0: AC N(B,e) and B C N(4,¢)}

defines a metric in 2%, the Hausdorff metric. See [10] and [15].
Let {A, : n € N} be a sequence in 2% and A € 2%, If
lim Hy(A,, A) =0,
n—oo

then we write lim A4,, = A.

3. DENDRITES

In this section we recall some basic properties of dendrites and of maps
defined on dendrites. Let D = (D, d) denote a nondegenerate dendrite.

Theorem 3.1. The following conditions hold:

e FEvery connected subset of D is arcwise connected.

e FEach subcontinuum of D is a dendrite.

e For each pair A,B € C(D), AN B = 0, there exist open and
connected subsets of D, U, and V, such that AC U, BCV, and
d)ne(V)=0.

o The intersection of any two connected subsets of D is connected.

e For every dendrite mapping f : D — D, Fixz(f) # 0.

Proof of Theorem 3.1 can be found in [15].

Let z € D. Tt is said that = is an end point of D provided that D\ {z}
is connected; z is a cut point of D if D\ {z} is not connected. The order
of x, ord(z), is the cardinality of the set of all components of D \ {z}.
Each point of D is of order < Ny (see [15]). If ord(x) > 3, it is said that
x is a branch point of D.

Proposition 3.2. Let {A,, : n € N} be a sequence of nonempty connected
subsets of D such that for each pair n #m, A, N Ay, = 0. Then

lim diam (A,) = 0.
n—oo
Proposition 3.2 is proved in [13].
Given two distinct points @ and b in D, there is only one arc from
a to b contained in D. We denote such an arc with [a,b]. Also, we
use the following notation: (a,b] = [a,b] \ {a}, [a,b) = [a,b] \ {b}, and
(a,b) = [a,0] \ {a,b}.
Let * € End(D). Then for each pair of distinct points a,b € D,
x € [a,b] implies = a or x = b.
For each A € 2 there exists a unique subcontinuum of D, Dy, (A) €
C (D), such that Dyin(A) is irreducible about A,

Duin(A) =({B € C(D): AC B}.



ENTROPY OF HOMEOMORPHISM C(f) : C(D) — C(D) 339

Proposition 3.3. For each A € 2P, Dyin(A) = Uy peala, b].

It is not difficult to prove Proposition 3.3.

We refer to Dpin(A) as the minimal subdendrite of D that contains
Ae 2P,

Let ¢ : 2P — C(D) defined by ¢(A) = Dpyin(A).

Theorem 3.4. The function ¢ : 2° — C(D) is continuous.

Theorem 3.4 is proved in [8].
Other properties of the mapping ¢ : 2P — C(D) are the following:
Let a,b € D, a #b. Then ¢({a}) = {a} and ¢({a,b}) = [a, b].
If A € 2P is finite, then (A) is a tree.
For each A € 2P, End(p(A)) C A.
For each A € C(D), p(A) = A.
Proposition 3.5 contains some results already known (see [9] and [16]).
Most of them are consequences of Theorem 3.4.

Proposition 3.5. Let a,b € D, a #b. Let {a,} and {b,} be two se-
quences of points in D such that lim,_cca, = a and lim, b, = .

e For each € > 0, there is 6 > 0 such that if d(a,b) < 9§, then
diam([a,b]) < €.

o lim,,_, o diam ([an,a]) = 0.

e For every e > 0, there exists 6 > 0 such that for any pair of points
wandvin D, ifd(a,u) < § and d(b,v) < 6, then Hy([a,b], [u,v]) <
€.

e lim[a,,b,] = [a,]].

e For each point x € (a,b), there exists 6 > 0 such that for each pair
of points u and v in D with d(a,u) < ¢ and d(b,v) < 9§, x € [u,v].

e For each arc [s,t] C [a,b], {s,t} N {a,b} = 0, there exists 6 > 0
such that for each pair of points u and v in D with d(a,u) < §
and d(b,v) < 9, [s,t] C [u,v].

e For each arc [s,t] C [a,b], {s,t} N{a,b} =0, there exists ng € N
such that for each n > ng, [s,t] C [an, by).

4. DyNAMIcS OF DENDRITE HOMEOMORPHISMS

We collect in this section some basic properties of dendrite homeomor-
phisms. Let D = (D, d) be a nondegenerate dendrite.

Proposition 4.1. Let f : D — D be a homeomorphism. Then for each
arc [a,b] contained in D, f([a,b]) = [f(a), f(b)].

The proof of Proposition 4.1 can be found in [16].
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Corollary 4.2. Let ¢ : 2P — CO(D) given by p(A) = Dyin(A). Let
f:D — D be a homeomorphism.
o Then for each A € 2P, o(f(A)) = f(p(A)).
o If A € 2P is strongly invariant under f, then Dy, (A) is strongly
invariant under f as well.
In particular, for every x € D, Dpm(a(z, f) U w(z, f)) is
strongly invariant under f.

Proof. The first part follows from Proposition 3.3 and Proposition 4.1.
The second part of the corollary is immediate from the first part. [

Proposition 4.3. Let f: D — D be a homeomorphism. Let a,b € D be
two distinct points such that f(a) = a and f(b) =b. Then for each point
x in the are [a,b], card(w(z, f)) = 1 and card(a(z, ) = 1. Furthermore,
if Fiz(f) N (a,b) = 0, then one of the following two conditions holds.

(1) For every x € (a,b), a(z, f) = {a} and w(x, f) = {b}, or

(2) for every x € (a,b), a(z, f) = {b} and w(z, f) = {a}.

Proposition 4.3 is proved in [9].

Corollary 4.4. Let f : D — D be a homeomorphism. Let a,b € D,
a # b, be periodic points of f. Then for each x € [a,b], card(a(z, f)) and
card(w(z, f)) are finite.
Proof. Let a,b € Per(f) be two points of periods n and m, respectively.

Let N = m-n. Then fV(a) = a and fV(b) = b.

According to Proposition 4.3, for each z € [a, ],

cardw(z, fN)) =1 and card(a(z, fV)) = 1.

The result is an immediate consequence of Proposition 2.1. (|

Theorem 4.5. Let f : D — D be a homeomorphism and x € D. Then
w(x, f) is either a periodic orbit or a Cantor set. Moreover, if w(zx, f) is
a Cantor set, then [ restricted to w(z, f) is an adding machine.

Theorem 4.5 is proved in [2].

According to Theorem 4.5, for each « € D, w(z, f) is a minimal set of
f provided that f: D — D is a dendrite homeomorphism. Therefore, in
this context, every limit set w(x, f) is contained in the set R(f). Thus,

R(f) = A(f) = U{w(z, f) sz € X}

Proposition 4.6 and Corollary 4.7 are immediate consequences of The-
orem 4.5.

Proposition 4.6. Let f : D — D be a homeomorphism and let x € D.
Then
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o flafz, f)) = alz, f);
o oz, f) is a minimal set of f.
Corollary 4.7. Let f : D — D be a homeomorphism and let x € D.
o Then x € w(x, f) if and only if x € a(z, f).
o Ifz ¢ w(z, f)Ua(z, [), then for everyy € D, x ¢ w(y, f)Ua(y, f).
Proposition 4.8. Let f : D — D be a homeomorphism. Then
R(f) = A(f) = cl(Per(f)).
Proposition 4.8 is proved in [16].
Proposition 4.9. Let f : D — D be a homeomorphism. Let x,z € D. If

2 € Dpin(a(z, f)Uw(z, ) \ (alz, f) Uw(z, f)),
then card(w(z, f)) and card(a(z, f)) are finite.

Proof. Since z € Dyin(a(z, f) Uw(x, )\ (a(z, f) Uw(x, f)), there exist

two points a and b in a(z, f) Uw(z, f) such that z € (a,b). Note that

a,b € R(f). By Proposition 3.5 and Proposition 4.8, there exist p,q €
Per(f) such that z € [p, .

Therefore, by Corollary 4.4, card(w(z, f)) and card(a(z, f)) are finite.

|

Corollary 4.10. Let f : D — D be a homeomorphism. Let x € D be a
point such that cardinality of w(x, f) is infinite. Then x € Dpyin(a(x, f)U
w(z, f)) if and only if z € afx, f) Uw(z, f).

Proof. The result is immediate from Proposition 4.9. (]

~— —

Proposition 4.11 is proved in [16].

Proposition 4.11. Let f : D — D be a homeomorphism. Let x €
D be a point such that w(zx, f) is infinite. Let a € Fix(f) such that
[a,z] N Fiz(f) = {a}. Then there exists u € (a,x] such that u € w(x, f).
Furthermore, if u # x, then there exists a sequence {N7 < Na < N3 <
-+ } C N such that for each pair i,j € N, i # j,

[P (), S @) N Y (), £ ()] = 0.

Corollary 4.12. Let f : D — D be a homeomorphism. Let x € D be a
point such that cardinality of w(x, f) is infinite. Then w(zx, ) = a(z, f).

Proof. Let x € D such that card(w(z, f)) = oo.

Limit sets w(z, f) and a(z, f) are strongly invariant under f, and they
are minimal sets of f. If z € w(z, f), the result is immediate.

Assume z ¢ w(z, f). Let a € Fiz(f) such that [a,z] N Fiz(f) = {a}.
According to Proposition 4.11, there exist u € (a, z] such that v € w(z, f),
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and a sequence {N; < N < N3 < ---} C N such that for each pair
i,j €N, i#j,
(4.1) AN (), N (@)] 0 LN (w), £ ()] = 0.

Since w(z, f) is a minimal set, it follows that

a(u, f) = w(u, f) = w(z, f).
Let i,j € N, i # j. By equation (4.1), and considering homeomorphism
f~WNitN;) - D — D, we have that
(4.2) [F=Ne(w), f N0 @) N [N (), fN ()] = 0
as well.

Therefore, by Proposition 3.2,
lim diam([f~ Vi (u), f i (x)]) = 0.

1— 00

Hence, a(z, f) Na(u, f) # 0 and w(x, f) = w(u, ) = a(u, f) = alz, f).
O

Corollary 4.13. Let f : D — D be a homeomorphism. Let x € D be a
point such that cardinality of a(x, f) is infinite. Then w(x, f) = a(x, f).

Proof. Since f~!' : D — D is a homeomorphism,

oz(x,f) = w(x’f_l) = Oé($,f_1) = w(x, f)
Thus, w(z, f) = a(z, ). O

Corollary 4.14. Let f : D — D be a homeomorphism and x € D. Then
w(x, f) is finite if and only if a(x, f) is finite.

The proof of Corollary 4.14 is immediate from corollaries 4.12 and 4.13.

Proposition 4.15. Let f : D — D be a homeomorphism. Let xq € D,
a € Fiz(f), zg # a.
o If [a, o) C [a, f(x0)], then there exists a point b € Fix(f), a # b,
such that lim, o f™(xo) = b and for each n € Z, f"(xo) € [a,b].
o If [a, f(xz0)] C [a,xo], then there exists a point b € Fix(f), a # b,
such that lim,, o f~"(x9) = b and for each n € Z, f™(xg) €
[a, b].

Proposition 4.15 is proved in [16].

Note that in either of the cases considered in Proposition 4.15, for each
point z € [a,b], we have that card(w(z, f)) = 1 and card(a(z, f)) = 1.
Corollary 4.16 is an immediate consequence of Proposition 4.15. See also
[1, Lemma 2.7].

Corollary 4.16. Let f : D — D be a homeomorphism. Let x¢g € D,
a € Fix(f), xo # a. If for some N € N, either
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o [a,z0] C [a, N (z0)], or

o [a, f¥(w0)] C la, zo],
holds, then for every x € la,xo], card(w(z, f)) and card(a(z, f)) are
finite.

Proposition 4.17. Let f : D — D be a homeomorphism. Let a,b €
Fix(f), a # b. If a and b are end points of D and card(Fiz(f)) = 2,
then one of the following two conditions holds:

(1) For every x € D\ {a,b}, a(z, f) = {a} and w(zx, f) = {b}.

(2) For every x € D\ {a,b}, a(z, f) = {b} and w(z, ) = {a}.

Proposition 4.17 is proved in [9].

Proposition 4.18. Let f : D — D be a homeomorphism. Let x € D.
Then

e any arc in D contains at most two points of w(x, f);
hd End(Dmll’l(w(xa f))) = w(x, f)
Proposition 4.18 is proved in [1].

Lemma 4.19. Let f : D — D be a homeomorphism. Let x € D such that
w(z, f) = alz, f) ={a}, a # x. Then for eachn € N, [a,z]N]a, ()] =
{a}.

Proof. Assume that there exists k£ € N such that

(4.3) [a, 2] N [a, f*(2)] = [a, 4],

with a # u.

If u = z, then [a,7] C [a, f¥(x)]. By Proposition 4.15, there exists a
point b € Fiz(f*), a # b, such that lim,, . f™*(x¢) = b. This contradicts
the assumption that w(zx, f) = {a}.

From now on we consider u # x.

Since u € [a,z] and a € Fiz(f), then f*(u) € [a, f*(x)]. Therefore,
by (4.3), points a, u, and f*(u) are in the arc [a, f*(2)]. We have two
options:

[a,u] C [a, fE(w)] or [a, ff(u)] C [a,u].
If [a,u] C [a, f¥(u)], then for each n € N, we have that

[a,u] € [a, f*(w)] C [a, f™(w)] € [a, f"* ().

Hence, lim,, ;o f™* () is not a. A contradiction.
Now consider the case [a, f*(u)] C [a,u]. By (4.3), [a, f¥(u)] C [a,u] C
[a,z]. It follows that

[a,u] € [a, f*(u)] € [a, f~* ().
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Hence, for each n € N,

[a,u] C [a, f5(w)] C [a, f7""(u)] C [a, f~"(2)].
Thus, lim, . f ™" () is not a. This contradicts the assumption that

a(z, f) = {a}. Then for each n € N, [a,z] N [a, " (z)] = {a}. O

Corollary 4.20. Let f : D — D be a homeomorphism. Let © € D be a
point such that w(zx, f) = a(z, ) = {a}, a # x. Then for each n,m € Z,
n#m, [a, f*(z)]N]a, f(x)] = {a}. Furthermore, A = Upezla, f™(x)] is
a subdendrite of D strongly invariant under f.

The proof of Corollary 4.20 is immediate from Lemma 4.19.

Proposition 4.21. Let f : D — D be a dendrite homeomorphism. Let
xo be a point of D that it is not a recurrent point, xo € D\ R(f). Let U
be the component of D\ R(f) that contains xo. Then for each x € U,

alz, f) =a(ze, f) and w(z, f) =w(xo, f).
Proposition 4.21 is proved in [9].

5. TOPOLOGICAL ENTROPY

In this section we recall the definition of topological entropy and some
of its basic properties. Let X = (X,d) denote a nondegenerate compact
metric space. Let f: X — X be a mapping.

Let ¢ > 0 and n € N. A subset A C X is said to (n,¢e)-span X if for
any z € X there exists a € A with

d(fi(z), f'(a)) <e, for 0<i<n-—1.

Let 7(n,e) denote the smallest cardinality of any (n,e)-spanning set
for X. Let

r(e, f) = limsup (i) log(r(n, £)).

n—oQ

The topological entropy of f is given by
ent(f) = lim r(c. ).
Note that for each € > 0, r(e, f) < ent(f). See [6].

Proposition 5.1. Let My, Ms, ..., My be k closed non empty subsets of
X. If all of them are invariant under f and X = My U Ms U --- U My,
then ent(f) = max{ent(f|r,) : 1 <i < k}.

The proof of Proposition 5.1 can be found in [4], [5], [6], and [17]

According to [4], the next more general claim is true.
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Proposition 5.2. If X is the union of {M; : t € T}, where each M; is
closed nonempty and invariant under f, then ent(f) = sup{ent(f|nr,) :
teT}.

Corollary 5.3. Let A C X be a closed and invariant set of f : X — X.
Then ent(f) > ent(f|a).

The proof of Corollary 5.3 is immediate from Proposition 5.1.

Proposition 5.4. Let Y be a compact metric space. Let g : Y — Y be
a mapping and h : X — Y be a surjective mapping. If for every x € X,
h(f(x)) = g(h(z)), then ent(f) > ent(g). If h is a homeomorphism, then
ent(f) = ent(g).

The proof of Proposition 5.4 can be found in [4], [5], [6], and [17].

Lemma 5.5. Let M C X be a closed set invariant under f. Let x,y € X
such that © € M, y ¢ M, and lim, o d(f™(z), f"(y)) = 0. Let P =
M U{f™(y) :n>0}. Then ent(f|p) = ent(f|p).

Proof. Notice that P is a closed subset of X invariant under f. Since
M C P, ent(f|m) < ent(f|p).

Let ¢ > 0 and m € N. Let no € N such that d(f"(y), f"(z)) < § for
each n > ng. Let E C M be an (m, §)-spanning set for f|ys of cardinality
T(mv %7 f‘M)

Let F = FU{f"(y) : 0 <n <ng—1}. It follows that F is an (m,¢)-
spanning set for f|p. Then r(m,e, f|p) < r(m, 5, flam) + no. Hence, for
each ¢ > 0, r(e, flp) < r(5, flm) < ent(f|a). Therefore, ent(f|p) <
ent(f|ar)- O

Theorem 5.6. If f : D — D is a dendrite homeomorphism, then ent(f) =
0.

Theorem 5.6 is proved in [2].

Proposition 5.7. Let D and E be two dendrites. Let f : D — D,
g:E— FE, and h: D — E be homeomorphisms such that for each x € D,
B(f(2) = g(h(x)). Let C(f) : C(D) — C(D), Clg) : C(E) — C(E), and
C(h) : C(D) — C(E) be the corresponding induced homeomorphisms.
Then

e For each A € C(D), C(h)(C(f)(A)) =C(g)(C(h)(A)), and

o ent(C(f)) = ent(C(g)).

6. ENTROPY OF THE INDUCED DENDRITE HOMEOMORPHISM
C(f) (FIRST PART)

Let D denote a nondegenerate dendrite. Let f : D — D be a homeo-
morphism. Recall R(f) stands for the set of recurrent points of f.
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In this section, we prove the following;:

e If there exists a point € D\ R(f), such that z is not an element
of the minimal subcontinuum that contains «(z, f) Uw(z, f), i.e.,
x & Dpin(a(z, f)Uw(z, f)), then ent(C(f)) = oo.
Example 6.1 plays a key role in our argument.
Example 6.1. Let S be a dendrite contained in the complex plane C
defined in the following way:
eLet [h={z=t-¢3):0<t<1}={2=t-i:0<t <1}
e For each n € N, let I,, = {z:t~ei(”_%+2) :0<t <L n%rl}
e For each n € N, let I_n:{z:t-ei(ﬁr?) 0<t < n_lH .
Let S = U,ezl,. The vertex of S is 0, the beans of S are I,,, n € Z.
Let g : S — S be the function defined by

e for each n >0, g(I,) = Iy 1;
. _ +1 . _ T 1
= t- i(m n,+2)) :TL -t i(m n+3) N<t< .
9(2) 9( e nrg te , 0st< —
o foreach n > 1, g(I_,) = I_p41,
=gt Z(n+2)): e <t < .
9z) =g (t-c — G, 0<t< —
The function g : S — S has the following properties:

e ¢g: S — Sis ahomeomorphism.

Fiz(g) = {0} = Per(g) = R(9g).

e For each pair n,k € Z, ¢*(I,) = I,4x. In particular, for each
nec Za g(ITL) = In41-

For every x € S, w(zx,g) = a(z,g) = {0}.

The entropy of the homeomorphism C/(g) : C'(S) — C(S) is oo.

This dendrite homeomorphism was introduced in [1]. Proofs of all
properties of it are in [1] as well.

From now on until the end of the section, let f : D — D be a dendrite
homeomorphism and let zo € D\ R(f) be a point such that

2o ¢ Dmin(a (o, f) Uw(zo, f)).
Consider the following equivalence relation in dendrite D:
e x ~ yif and only if z,y € Dpn(a(zo, f) Uw(zg, f))-
o If v ¢ Dyin(a(zo, f) Uw(zo, f)), then x ~ y if and only if z = y.
Let E = D/ ~ be the identification space and let p : D — E be the
natural mapping. Since p : D — E is monotone, then E is a dendrite (see

[7D)-
Let a = p(Dmin(a(zo, f) Uw(zg, f))). Let F : E — E be the function
given by
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e F(a)=a.
e Foreachy € E, y # a, let F(y) = p(f(z)) where p(z) =y.

Note that Din(a(zo, f) Uw(xo, f)) is strongly invariant under f. Tt
follows that F' : E — E is a homeomorphism, and for each =z € D,

p(f(z)) = F(p(x)).
Since g ¢ Dpin(a(xo, f) Uw(zo, f)), p(xo) # a and

lim F"(p(xp)) =a and EIEI F"(p(z0)) = a.

Therefore,
w(p(zo), F) = a(p(xo), F) = {a}.

From now on let E =D/ ~ and F : E — E stand for the dendrite and
the homeomorphism defined above.

Proposition 6.2. The homeomorphism F : E — E enjoys the following
properties:

e For each pair n,m € Z, n # m,
[a, F" (p(x0))] N [a, F™ (p(x0))] = {a}.

e The union L = Upezla, F™(p(x0))] is a subdendrite of E strongly
invariant under F.

Proof. Both results are immediate consequences of Lemma 4.19 and Corol-
lary 4.20. |

Corollary 6.3. Let u € Dyin(a(xo, f) Uw(xo, f)) such that
[z0, u] N Din(a(zo, f) Uw(zo, f)) = {u}.
Then
e for each pair n,m € Z, n # m,
[f" (o), f™(w) N[ ™ (o), f™ () = 0;

® J = Duin((z0, f)Uw(zo, f))U(Unez[f" (x0), f" (u)]) is a dendrite
contained in D strongly invariant under f : D — D, p(J) = L,
and for each x € J, p(f(z)) = F(p(z)).

Proof. The mapping p : D — E is monotone and J = p~1(L). Now the
result is an immediate consequence of Proposition 6.2. O

Proposition 6.4. Let S be the dendrite and let g : S — S be the home-
omorphism, both described in Example 6.1. Then there exists a homeo-
morphism h : L — S such that for each y € L, h(F(y)) = g(h(y)).
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Proof. Let hg : [p(x0),a] — Iy be a homeomorphism such that
ho(a) =0 and ho(p(zo)) = €(3).

For each n € Z, let h,, : [F™(p(x0)),a] — I, given by h,, = g"ohgo F~".
Let h: L — S be the function given by

e h(a) =0.
o Lety € L, y # a. There exists n € Z, y € [F"(p(z0)),a]. Then
hy) = ha(y).

It follows that h : L — S is a homeomorphism.
Let y € [F™(p(xo)), a], then

h(F(y)) = g"" ohoo F~U D (F(y)) = g" " o hg o F"(y)
=gog"ohoo F"(y) = g(h(y))-
This completes the proof. (|
Corollary 6.5. The topological entropy of C(F|t) : C(L) — C(L) is oc.

Proof. Let S be the dendrite and let g : S — S be the homeomorphism
both described in Example 6.1.

According to Proposition 6.4, there exists a homeomorphism & : L — S
such that for each y € L, h(F(y)) = g(h(y)).

The induced mappings C(F|.) : C(L) — C(L), C(h) : C(L) — C(S),
and C(g) : C(S) — C(S) are homeomorphisms with the property that for
each A € C(L),

C(h)(C(FlL)(A)) = C(g9)(C(h)(A)).

Since ent(C(g)) = oo, then ent(C(F|r1,)) = oo. O
Corollary 6.6. Let J C D be the dendrite described in Corollary 6.3,
J = Dmin(a(an .f) U w(an f)) U (Unez[fn(ﬁt‘o)7 fn(u)])
Then the topological entropy of C(f|r): C(J) — C(J) is oo.

Proof. Notice that f|; : J — J is a homeomorphism, and the natural
mapping p : J — L is monotone and onto. Then C(f|;) : C(J) — C(J)
is a homeomorphism and C(p) : C(J) — C(L) is a surjective map.

According to Corollary 6.3, for each = € J, p(f(z)) = F(p(z)). Then
for each A € C(J),

Cp)(C(f11)(A)) = C(FL)(C(p)(A))-
Since ent(C(F|L)) = oo, then ent(C(f]s)) = oo. O

Theorem 6.7 summarizes our work in this section.
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Theorem 6.7. Let f : D — D be a dendrite homeomorphism. If there
exists a point o € D\ R(f) such that

Zo ¢ Dmin(a(mm f) ) w(.’)ﬂo, f))a
then ent(C(f)) = 0.

Proof. Let J C D be the dendrite described in Corollary 6.3,

J = Duin(a(zo, f) Uw(xo, [)) U (Unezlf" (w0), [ (w)])-

This dendrite is strongly invariant under f : D — D. Then the hy-
perspace C(J) is a closed subset of C(D) strongly invariant under the
induced mapping C(f).

By Corollary 6.6,

ent(C(Dlcw) = ent(C(f1,) = .
It follows that ent(C(f)) = oc. O

7. ENTROPY OF THE INDUCED DENDRITE HOMEOMORPHISM
C(f) (SEcOND PART)

Let D = (D, d) denote a nondegenerate dendrite. Let f : D — D be
a homeomorphism. Recall that according to Proposition 4.8, the set of
recurrent points R(f) is closed.
In this section, we prove the following;:
e If R(f) = D, then ent(C(f)) = 0.
o If R(f) # D and for every x € D\ R(f), * € Dpn(a(z, f) U
w(z, f)), then ent(C(f)) = 0.

Theorem 7.1. Let f: D — D be a dendrite homeomorphism such that
R(f) = D. Then ent(2/) = 0.

Theorem 7.1 is proved in [9].

Corollary 7.2. Let f : D — D be a dendrite homeomorphism such that
R(f) = D. Then ent(C(f)) =0.

Proof. The hyperspace C(D) is a closed subset of 2P, and it is strongly
invariant under mapping 27 : 2P — 20,
Hence, 0 < ent(C(f)) = ent(2/|c(p)) < ent(2) = 0. O

From now on until the end of the section, we assume the following
conditions:

e f: D — D is a homeomorphism.

o R(f)#D.

e For each xg € D, 29 € Dpyin(a(z0, f) Uw(zo, f)).
Proposition 7.3. Let U be a component of D\ R(f). Then
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o there exists N € N such that fN(U) = U;
o there exist two distinct points a,b € R(f) such that U = (a,b).

Proof. Let us prove the first part.

Let A be the collection of all components of D\ R(f). If A is finite,
the result readily follows.

Assume the cardinality of A is infinite. Let U € A. It is enough to
show that there exists N € N such that fN(U)NU # 0.

Assume that
(7.1) for every n e N,  f"(U)NU = 0.

Let xg € U. Since zo ¢ R(f),

ZTo € Dmin(a(x(h f) U w(l‘o, f)) \ (OL(JCO’ f) U w(an f))

By Proposition 4.9, card(w(xo)) and card(a(zg)) are finite.

Hence, Duin(a(zo, f) Uw(zo, f)) is a tree.

Condition (7.1) implies that
(7.2) for each n,m €z, n#m, [fU)Nf™U)=0.
It follows that

li_>m diam(f"(U)) =0 and li_>m diam(f™(cl(U))) = 0.

Therefore, for each = € cl(U), w(x, f) = w(xo, ).

Let yo € cl(U) \ U. Note that yo € R(f).

Since w(yo, f) = w(xo, f), Yo € Dmin(a(zo, f) Uw(zo, f)) and

[Y0, Zo] C Dimin(a(zo, f) Uw(zo, f)).

Also, f*(yo) = yo, where k = card(w(xo, f)).
The set U U {yo} is connected. Hence, [yo, zo] C U U{yo}, and (yo, zo]
is contained in U.
The collection of arcs {[yo, f™**(z0)] : n € Z} has the following proper-
ties:
e For each n € Z, [yo, f™*(20)] C Dmin(a(z0, f) Uw(zo, f)).
e According to condition (7.2), for every n,m € Z, n # m,

o, £ (20)] N [yo, ™ (x0)] = {wo}-
Hence,
A= Jlyo, f"*(@o)) : n € Z} C Dyin(a(o, f) Uw(wo, f)).

This is a contradiction. Thus, there exists N € N such that fN(U)NU #
0.

Now we prove the second part.

Let U be a component of D\ R(f). Let N € N such that f¥(U) =U.
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Note that cl(U) is a dendrite strongly invariant under fV. Let a €
cl(U) such that fN(a) = a.
Let ¢ € U. It follows that for any n € Z,

[a, " (w0)] € U U {a}.
If [a, f~ (20)] C [a,z0], then by Proposition 4.15, there exists b € D,
b€ Fiz(fN), b # a, such that

lim fN"(z0) =a and  lim fN"(x) = b.
n—oo n——oo

In this case, we have [a,b] C U U {a, b} and (a,b) C U.
If [a,z0] C [a, fN(x0)], then there exists b € D, b € Fiz(fN), b # a,
such that

lim f¥™(zo)=b and lim fN"(x0) = a.
n—oo n——oo

Again, we have that [a,b] C U U {a,b} and (a,b) C U.

The case fN(z0) ¢ [a,70] and x¢ ¢ [a, f~ (x0)] is impossible. Let us
see why.

Assume that fV(z) ¢ [a, ] and zg ¢ [a, f¥ (x0)]. Since fN(xo) € U,
[fN(z0),20] CU. Let u € [a,z0] such that

[ (o), u] N [a, o] = {u}.
Note that

(7.3) [FN (o), u] U [u, mo] = [N (z0), zo]-
It readily follows that u # a.
By hypothesis,
wo & [a, f¥ (z0)] = [a,u] U [f" (z0), u].
Hence, u # xg. Therefore, the point u € U has the following properties:
o [a,u] N[u,zo] = {u}.
o [a,u] N [u, [N (z0)] = {u}.
o [u,zo] N [u, fN(20)] = {u}.
That is, u is a branch point of D.
Now, from (7.3), we know that u € [fV(z0),zo]. It implies that
u € Dmin(a(x(h f) UW(.T?O’ f))
For every n € Z, fN™™(u) € Dmin(a(xo, f) Uw(wo, f)). And for every
nym € Z, n # m, fN"(u) # fN™(u). Then the tree Duyin(ca(wo, f) U
w(xg, f)) contains infinitely many branch points. This is a contradiction.

Hence, we have proved that there exist two distinct points a,b € cl(U)\U
such that

e (a,b) C U, and z € (a,b);
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e for each z € (a,b),

lim f¥"(x)=a and lim fN"(z) =0,
n—o0 n——oo

or for each x € (a,b),

lim fN"(z)=b and lim fV"(z)=ua.
n—oo n——oo

Either one of these two options implies that

{a7 b} C Dmin(a(x()a f) U (JJ(Z‘(), f))
Finally, let © € U. We claim that z € (a,b). If z ¢ (a,b), then with
a similar argument as the one described above, we find a branch point of
D in (a,b). It leads us to a contradiction. Thus, U = (a, b). O

Let U be a component of D\ R(f). It is said that
e U is periodic of period 1 provided that f(U) =U.
e U is periodic of period k > 2 provided that f¥(U) = U and for
each 1 <i<k—1, f{(U)NU = 0.
Notice that if U = (a,b) and f(U) = U, then f(a) = a and f(b) = b.
Furthermore, if U is of period k € N, then f*(a) = a and f*(b) = b, and
o(a, f)No(b, f) = 0.

Lemma 7.4. Let Uy be a component of D\ R(f) of period k > 2. Let
U= f'(Up), 0<i<k—1.
Then there exists a homeomorphism [ : D — D with the following
properties:
e For each x € D\ (U'Z1Uy), I(x) = f(x).
e For every x € US_JU;, 1¥(x) = 2. That is, v € Per(l).
o R(l) = R(f) U (U Ui).

Proof. Let ¢ € Uy, ag = lim,, oo f¥™(z0), bo = lim,,_, oo f¥™(x0).

Then for each 0 < i < k— 1, U; = (a;,b;), where a; = f*(ap) and
bi = f*(bo).

Define [ : D — D as follows:

o Ifxc Uy, I(x) = f1F(2).
o If € D\ U_y, l(z) = f(x).

It is not difficult to see that [ : D — D is a homeomorphism that
holds the first and the second properties; in particular, for each point
T € Uf;olUi, *(z) = .

The third part of the lemma, R(I) = R(f)U(UZ1U;), is immediate. O

Proposition 7.5. There exists a homeomorphism | : D — D with the
following properties:

e For every x € R(f), l(z) = f(x).
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e The set of recurrent points of | is D, R(l) = D.

Proof. Let A be the collection of all components of D\ R(f). There are
two cases: A is finite or A is denumerable. We study the second case; the
first one is similar.

Let A = {U1,Us,Us,...}. We assume that U; N U; = 0 if i # j.

Notice that by Proposition 3.2, lim,,_,, diam(U,,) = 0.

Our argument has two parts. First, we produce a sequence of homeo-
morphisms {l,, : D — D}$2,. Then we define [ : D — D as the limit of
that sequence.

Let k1 € N be the period of component U;. If ky = 1, let Ay = {U;}
and define [; : D — D as follows:

e For every x € D\ Uy, l1(z) = f(x).
e For every x € Uy, l1(z) = x.
Hence, l; : D — D is a homeomorphism with the following properties:
e For every x € R(f), l1(z) = f(z).
e R(ly)=R(f)UUs.

If by > 2, let Ay = {Ul,f(Ul),fQ(Ul),...,fkl_l(Ul)} and UA; =
Ui 7 (Uh).

Let 1 : D — D be the homeomorphism we obtain after we follow
the procedure described in Lemma 7.4. This homeomorphism has the
following properties:

For each z € D\ (UA4), l1(x) = f(x).
For every « € UAy, I¥(z) = .

R(lh) = R(f) U (UA1).

For each x € R(f), li(z) = f(z).

Now let ng = min{i € N: U; € A\ A;}. Consider the component U,
and let ko be its period. Let Ag = {U,,} if k2 = 1; or let

Ay = {UHQvf(Un2)7f2(Un2)v o ‘7fk2_1(Un2)}

if ko > 2.
From the homeomorphism {; : D — D, by Lemma 7.4, we obtain a
new homeomorphism ls : D — D with these properties:

For each x € D \ (UAz), lIa(z) = l1(z).
For every z € UAy, I¥2(z) = x.
R(lg) = R(ll) U (UAQ).
For each x € R(f), l2(z) = f(z).

Following this procedure, we obtain a sequence of sets {A,, : n € N}
and a sequence of homeomorphisms {l,, : D — D : n € N}. They enjoy
these properties:
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e For each j € N, there exists n € N such that U; € A,. Thus,

A =UX A,
e For each n € N, R(f) C R(l,) C R(lp41)-
e For each € > 0, there exists jo € N such that

max {diam(U) : U € A\ (A1 UAU---UAj )} <e.
Then, in the Hausdorff metric,
lim R(l,,) = D.

e For every point € R(f) and for every n € N, [,,(z) = f(x).

Another consequence is this one. Let zp € D\ R(f). There exists an
open component U € A, zp € U. Hence, there exists ng € N such that
for every n > ng,

ln(z) =lpy(x), forevery zeU.
Then, in particular, lim,,, 1, (xo) does exist.
Finally, let [ : D — D be the function given in this way:

e For each x € R(f), let I(z) = f(x).
e For each x € D\ R(f), let l(z) = limy, 00 In ().
Notice that for each € > 0, there exists ny € N such that for every
n 2 no,
max {d(l,(z),l(z)) :x € D} < e.
It follows that [ : D — D is a homeomorphism and R(l) = D. O

Proposition 7.6. LetT'={L € C(D): End(L) C R(f)}. Then

o I' is a closed subset of C(D).
o I' is invariant under C(f).

Proof. The set of recurrent points of f, R(f), is a closed subset of D.
Hence, 2%/ is a closed subset of hyperspace 2°.

According to Theorem 3.4, function ¢ : 2P — C(D), ¢(A) = Duin(A),
is continuous. Let

0 = p(270) = {p(4) : A € 27},

Cramm. I'=0.

Let L € T. Since End(L) C R(f) and L = ¢(cl(End(L))), then L € ©.

On the other hand, let us assume L € O. Since L = ¢(A) for some
A € 28 then End(L) C A. Thus, L € I'. We conclude that T' = ©.

Now we prove the second part of the Proposition. Let L € T'.

The set of recurrent points R(f) is strongly invariant under f. Since
f : D — D is a homeomorphism, f(End(L)) = End(f(L)). Hence,
End(f(L)) C R(f). It follows that f(L) € I O
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Proposition 7.7. Let I' = {L € C(D) : End(L) C R(f)}. Then
ent(C(f)Ir) = 0.

Proof. By Proposition 7.5, there exists a homeomorphism [ : D — D with
the following three properties:

e For each x € R(f), I(z) = f(x).
e The set of recurrent points of [ is D, R(l) = D.
e By Corollary 7.2, ent(C(1)) = 0.

Let L € T'. Since cl(End(L)) C R(f),
f(c(End(L))) = l(cl(End(L))).
Now, using Corollary 4.2,
f(L) = Duin(f(cl(End(L))))

— Dun((cl(End(L))) = I(L).
Therefore, C(f)|r = C()|r.
It follows that ent(C(f)|r) = ent(C(l)|r) = ent(C(l)) = 0. O

Proposition 7.8. LetI' = {L € C(D) : End(L) C R(f)}. Let A € C(D)
such that A ¢ I'. Then there exists B € I" such that

lim H(C()"(B),C(f)"(4)) = 0,
Proof. Let A € C(D)\T. Let A = {U;,Us,,Us,...} be the collection of

all components of D\ R(f).

Case 1. There exists U € A such that A C cl(U).
Let k € N be the period U. Let a,b € D such that cl(U) = [a,b], and
for every z € U,

lim f*"(z)=a and lim f*"(z)=0.

n—o0 n——00

Notice that A is a point or an arc contained in [a,b]. Also [a,b] € T.
If b ¢ A, then

lim H(C(f)""({a}), C())*"(4)) = 0.
(

Let B = {a}. Then lim,_,. H(C(f)"(B),C(f)"(A)) =0.
If b€ A, then A = [c,b] with ¢ € (a,b). Let B = [a,b]. Then

)
lim_H(O(f)F"(B),C(f)*"(4)) = 0.
And again, it follows that lim, ., H(C(f)"(B),C(f)"(A)) =0.
Case 2. For each U € A, A is not contained in cl(U).

In this case, we have that AN R(f) # 0. Let L = Dunin(4A N R(f)).
Hence, L C Aand L €T.
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Let A’ be the collection of all elements U of A such that ANU # 0
and ¢l(U) is not contained in A.
A/Z{W17W27...}, Wiij:(D, if Z;é.]

From now on, we assume A’ is denumerable. The proof of the finite

case follows a similar argument.
For each j € N consider W; € A’. Let x € W}, let k; be the period of
W;, and let

aj = nl;rr;o fkin(z) and b; = nBIPoo fkjn(x)

Hence, W = (aj,b;).
Let
(] Lj = [aj,bj], if bj e L.
o Lj = {aj}, if a; € L.
o B == L U (U;‘;l)LJ
Note the following:
e For each j € N, L; N L # (. Since lim;_,o diam(L;) =0, B is a
closed subset of D.
e For each m € N, By, = LU (UjL;)L; is a dendrite. Furthermore,
B, €T.
e Since limB,, = B, B€T.

Cram. lim, . H(C(f)™(B),C(f)"(A)) =0.
Let € > 0. There exist only finitely many elements of A, say

{Uannw"'vUns}?

with diameter > ¢.
Then there are finitely many elements of collection A’, say

{Wm17Wm2) R} Wml}v
where
OWin,, C(IN) N Uy, Unyy o Un £ 0, 1<t <.
For each 1 <t <, A,,, = ANcl(W,y,,) is an arc with this property:
lim H(C(f)"(Lm,), C(f)"(Am,)) = 0.
n—oo
There exists ng € N such that for every n > ng and for very 1 <t </,
H(C(f)"(Lm,), C(f)"(Am,)) <e.
Hence, for every n > ny,

H(C(f)™(L U (Ui Lim,)), C(f)" (LU (Uj=y Am,))) < e.
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Now, let Wy, € A'\{ Wiy, Wiy, ..., Wiy, }. Note that for every n € N,
diam(C(f)"(dd(Wp,))) < e.

Since both A,, = ANcl(W,,) and the corresponding L, are contained
in cdd(Wp,),

H(C(f)"(Lm),C(f)"(Am)) <e, forevery neN.
Since B = LU (U%,)L; and A = LU (UX))A;, Aj = AN cl(W;), we
have that for every n > ng, H((C(f)"(B),C(f)"(A))) < e. O

The following result summarizes our work in this section.

Theorem 7.9. Let f: D — D be a dendrite homeomorphism such that
R(f) # D. If for each o € D\ R(f),

To € Dmin(a('rm f) U W(x(% f))7
then ent(C(f)) = 0.

Proof. Let T' = {L € C(D) : End(L) C R(f)}. Let A€ C(D)\T.
By Proposition 7.8, there exists B € I' such that

T H(C(f)"(B), C(/)"(4)) = 0.

Hence, T Uo(A,C(f)) is a closed subset of C(D) invariant under C(f).
By Lemma 5.5,

ent(C(f)|ruoa,cry)) = ent(C(f)Ir) = 0.
Notice that
C(D) = U{T Uo(A,C(f)) : A€ C(D)\T}.
Then
ent(C(f)) = sup{ent(C(f)Iruo(a,c(ry) : A€ C(D)\T}=0. O

8. Copba

Let D be a nondegenerate dendrite. Let f : D — D be a home-
omorphism. Our goal in this short section is to show that conditions
End(D) C R(f) and ent(C(f)) = 0 are equivalent.

Proposition 8.1. If for every x € D, © € Dyin(a(x, f) Uw(z, f)), then
End(D) C R(f).

Proof. Let x € End(D). Since x € Dyin(a(z, f) Uw(x, f)), there exist a
and b in the union a(z, f) Uw(z, f) such that = € [a, b].
It follows that = a or x = b. Thus, x € R(f). O

Proposition 8.2. If End(D) C R(f), then for every x € D,
2 € Dpin(a(z, f) Uw(z, f)).
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Proof. Assume, to the contrary, that there exists zo € D such that

Zo ¢ Dmin(a((EOv f) ) OJ(iIJ(), f))

It follows that xg ¢ R(f) and ¢ ¢ End(D).
By Corollary 6.3, there exists a € Din(a(x0, f) Uw(xo, f)) such that

® [z0,a] N Din((@0, f) Uw(zo, f)) = {a}, and
e for each pair n,m € Z, n # m,
[f" (o), f™(a)) N [ (20), [ (a)) = 0.
Let u,v € End(D) such that zy € [u,v]. Then

[u, zo] N [xo,a] = {xo} or [v,20]N[z0,a] = {z0}.

Let us assume that [u, 9] N[z, a] = {xo}. Then [u, 2] Uz, a] = [u, a]
is an arc such that xg € (u,a). It follows that v ¢ Duyin(a(zo, f) U
w(o, f)).
Since for each n € Z, f™(x¢) ¢ Din(a(xo, f) Uw(zg, f)) and
fn(Dmin(a(x(% f) U w((EOv f))) = Dmin(a(xm f) ) (U({E(), f))v
we have that
d [U, a] N Dmin(a(xm f) Uw(x07 f)) = {a}7 and
e for each pair n,m € Z, n # m,
[F" (w), £ (@) N Lf™ (), [ (a) = 0.
Therefore, u € R(f), u ¢ Dpin(a(xo, f) Uw(xo, f)) and
a(u, f) @] (JJ(U, f) C Dmin(a(x(), f) U w(‘an f))

This is a contradiction. g
Corollary 8.3. End(D) C R(f) if and only if ent(C(f)) = 0.

Proof. The result is an immediate consequence of theorems 6.7 and 7.9
and of propositions 8.1 and 8.2. O
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