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ABsTrACT. Given a Lie group G and its compact subgroup H,
we consider G as an H-space endowed with the conjugation action
and prove that the quotient projection G — G/H is an equivariant
H-fibration. As a consequence, every G-map E — G/H is a G-
fibration.

1. INTRODUCTION

In equivariant homotopy theory, G-fibrations (the equivariant version
of a Hurewicz fibration) play such an important role as Hurewicz fibrations
do in usual homotopy theory.

Generally speaking, equivariant homotopy theory is well developed for
the case when the acting group G is a compact Lie group. For example,
one of the notable results is that if H is a closed subgroup of a compact
Lie group G, then every G-map p : E — G/H is a G-fibration for any
G-space F (see [12, p. 53]).

A natural question is whether this result remains valid when the acting
group G is non-compact.

In |8, Theorem 5.1], it is shown that the projection G/K — G/H is
a G-fibration provided that G is a compact (not necessarily Lie) group,
K and H are closed subgroups of G such that K C H, and G/K is
metrizable. Furthermore, in [6, Corollary 6.5], it is proved that if G is a
compact metrizable group and H is its closed subgroup, then any G-map
E — G/H is a G-fibration.

In this paper, the above-mentioned results are extended to the case of
non-compact Lie groups. Our main results are theorems 4.2 and 4.4.
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2. NOTATION AND PRELIMINARIES

By the letter G, we will denote a locally compact Hausdorff topological
group.

By a G-space, we mean a topological space X, together with a fixed
continuous action (g,z) — gz of G on X.

Let X be a G-space. For z € X, the subgroup G, = {g € G | gx = «}
is called the isotropy group at x and the G-space G(z) = {gz | g € G} is
called the G-orbit of x.

A subset A C X of a G-space X is called a G-invariant or just invariant
if G(a) C A for every a € A.

Let X and Y be G-spaces. A continuous map f : X — Y is called
a G-map or equivariant map if f(gx) = gf(x) for every (g,z) € G x X.
If a Gmap f : X — Y is a homeomorphism, then it is called a G-
homeomorphism, and we say that X and Y are G-homeomorphic whenever
there exists a G-homeomorphism between them.

A homotopy F : X xI — Y, where I = [0, 1], is called a G-homotopy if
it is a G-map where X x I is a G-space with the diagonal action g(z,t) =
(g2, ).

For a topological group G and its closed subgroup H, we will denote
G/H = {gH | g € G} the coset space, endowed with the action of G
defined by left translations, i.e., g-¢'H = g¢'H for every g € G and
¢'H € G/H.

Proposition 2.1 ([4, Ch. I, Proposition 4.1]). Let G be a compact group,
let X be a Hausdorff G-space, and let x € X. Then the G-map G/G, —
G(z), gGx — gz is a G-homeomorphism, and hence, G/G, and G(z) are
G-homeomorphic.

A G-ANR-space is the equivariant version of an absolute neighborhood
retract, that is, a G-space X is G-ANR if for any metrizable G-space Y
and any equivariant closed embedding ¢ : X < Y, there is an invariant
neighborhood U of ¢(X) in Y such that i(X) is a G-retract of U.

The following significant result, in particular, shows that if G is a
compact Lie group, then each one of the orbits of any G-space is a G-
ANR.

Proposition 2.2 ([10, Corollary 1.6.7]). Let H be a closed subgroup of a
compact Lie group G. Then G/H is a G-ANR.

More results and all the basic notions of equivariant topology can be
found in [4] and [12]. For the equivariant theory of retracts we refer the
reader to [1], [2], and [3].
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3. G-FIBRATIONS

By a G-fibration, we mean a natural equivariant version of a Hurewicz
fibration: a G-map p : E — B is called a G-fibration if it has the equi-
variant homotopy lifting property (EHLP) with respect to every G-space
X (see [12, p. 53]). That is to say, for every G-space X, every G-
map f : X — FE, and every G-homotopy F' : X x I — B such that
F(z,0) =po f(x), z € X, there exists a G-homotopy F:XxI—E as
a filler of the following diagram (i.e., Fody= fand po F= F):

X#E

where 0y (z) = (z,0).

Clearly, every G-space can be considered as an H-space for any sub-
group H C G. That is, we have a restriction functor from the category
of G-spaces to the one of H-spaces. This functor preserves equivariant
fibrations.

Proposition 3.1 ([9, Proposition 2.2]). Let H be a closed subgroup of a
compact group G. If p: E — B is a G-fibration, then p is an H-fibration.

In the case of compact Lie group actions, G-fibrations appear in the
following natural way.

Proposition 3.2 ([8, Proposition 3.1]). Let H be a closed subgroup of
a compact Lie group G and let E be a metrizable G-space. Then every
G-map E — G/H is a G-fibration.

Also, we are going to need another kind of G-fibration with stronger
conditions.

A G-map p : E — B of metrizable G-spaces will be called a regular
G-fibration if for any closed G-subset A of a metrizable G-space X and
any diagram of G-maps

Xx{O}UAxI%E

P

X5l p

there exists a G-homotopy F:X xI— E as a filler.
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It is not difficult to see that every regular G-fibration is a G-fibration,
taking A = () in the definition of regular G-fibrations and recalling that
any G-map between metrizable G-spaces, having the EHLP with respect
to metrizable G-spaces, also has the EHLP with respect to all G-spaces
(see [8, Remark A.1]).

Proposition 3.3 ([7, Theorem 3.4]). Let G be a compact group and p :
E — B a G-map of metrizable G-spaces. If E and B are G-ANR-spaces
and p is a G-fibration, then p is a reqular G-fibration.

Regular G-fibrations are locally characterized in the following way.

Proposition 3.4 ([8, Proposition 3.6]). Let G be a compact group and
p: E — B be a G-map of metrizable G-spaces. Suppose that there is a
covering U of B by open G-invariant sets such that the restriction of p,
p~ 1 (U) — U is a regular G-fibration for each U € U. Then p is a regular
G-fibration.

4. G-FIBRATIONS BY CONJUGATION

One of the important examples of G-fibrations is the canonical projec-
tions of topological groups onto their coset spaces.

Proposition 4.1. Let H be a closed subgroup of a locally compact group
G. Then the projection m : G — G/H, g — gH, is a G-fibration where
both spaces are endowed with the actions defined by left translations.

Proof. The proof is essentially the same as in [5, Proposition 2.2]. In
the proof of that proposition, in order to guarantee that the projection
G — G/H is a (non-equivariant) fibration, it is required that the subgroup
H be a compact Lie group. However, we observe that it is not necessary
to assume that H is a Lie group; instead, we can apply E. G. Skljarenko’s
result [11, Theorem 15] which claims that the projection G — G/H is a
non-equivariant fibration for every closed subgroup H of a locally compact
group G. Further, continuing exactly in the same way as in [5, Proposition
2.2], we get the desired result. O

The main object of this paper is the quotient projection ¢ : G — G/H
where H is a compact subgroup of a Lie group GG. Here, G is considered
as an H-space endowed with the conjugation action, i.e., hxg = hgh™! for
every h € H and g € G. At the same time, we let H act on G/H by the
rule h-gH = hgH. Below, we will show that the projection ¢ : G — G/H
is an equivariant H-fibration. This is going to be a consequence of our
main result.
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Theorem 4.2. Let H be a compact subgroup of a Lie group G and let
I'=H x H. If T acts on G by conjugation, (h1,hs) * g = hlghgl, and
on G/H by (hi,hs) - gH = h1gH, then the projection ¢ : G — G/H,
g gH, is a reqular T'-fibration.

Proof. Tt is easily seen that ¢ is a I'-map, because ¢((hi,hs) * g) =
q(highy ') = haghy 'H = hygH = (h, ho) - gH = (b, hs) - q(g).

We are going to apply Proposition 3.4. Let goH € G/H and note that
q ' (T(goH)) = T'(go)-

Since T' is a compact Lie group, by Proposition 2.2, there is a I'-
invariant neighborhood U of I'/Ty, = I'(go) in G and a I'-retraction
r: U — I'(go). Let V = q(U), then U = ¢~ *(V), and we have the
following commutative diagram of I'-maps

U —— T(g0)
(41) qlu Q|F(90)

V —— I(goH)

where 7 (gH) = r(g)H for every gH € V.
Now we will see that, in fact, this is a pull-back diagram.
a|r(g0)

Let P be the pull-back of V5 T'(go H) +—= T'(go). This is

P ={(gH,7(90)) € V xT'(g0) | ru(gH) = q(7(g0)) }
= {(9H,7(90)) | 7(9)H = v(go)H}.

Then there is a unique I'map ¢ : U — P such that the following
diagram commutes

qlr(ge)

V ——— T'(90H)
and ¢ is defined by ¢(g) = (¢(g),7(g)) for g € U.
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If ©(g) = »(g'), that is, (q(g),7(9)) = (a(¢),(¢')), then gH = g'H
and r(g) = r(¢’). So there is an h € H such that ¢’ = gh and r(g) =
r(g") = r(gh) = r((e,h™) * g) = (e,h™ 1) x r(g) = r(g)h, which means
that h = e, and hence, ¢’ = g. Therefore, ¢ is injective.

If (9H,7(go)) € P, then (r(g))~*v(go) € H implying g(r(g))~"v(g0) €
U, and therefore, ¢ is surjective.

We claim that ¢(g(r(g))~"7(90)) = (9H,7(g0))- Indeed,
e(9(r(9))"(90)) = (alg(r(9)) " ¥(90)), 7(9(r(9)) " ¥(90)))
= (q((e; ((r(9)) " (90) 1) + ), m((e, ((r(9) " 7(90)) ™) * 9))
= (e, ((r(9))""v(90) ") - a(9), (e, ((r(9)) " (90) 1) % 7(9))
= (a(9),m(9)(r(9))""¥(90)) = (9H,7(90))-
) =

Now, let us define ¢ : P — U by @(gH,v(g0)
(9H,~(g0)) € P

Suppose (¢'H,~'(90)) = (9H,7v(g0)) € P. Then o' = v and there is an
h € H such that ¢’ = gh. So

@(9'H,~'(90)) = ¢'(r(9")) "' (90)
= gh(r(gh))~"v(g0)
= gh(r((e,h™ ") % g))~
= gh((e,h™") xr(g9))~ 7( )
= gh(r(g)h)"v(g0)
= ghh™'(r(9)) ™ v(90)

= 9(r(9))""v(90)

= @(gH,7(90))-

9(r(g9))~'(go) for

Let g € U, then
pow(g) = ¢(alg).r(g)) = ¢(gH,7(9))
=g(r(9)) " 'r(9) = g-
Now, let (gH,~(go)) € P, then
@ o p(gH,(90)) = (9(r(9)) " 7(90))
= (q(g(r(9))"7(90)), 7(9(r(9)) " 7(90)))-
Since (7(g))~"v(g0) € H, we see that q(g(r(g))~'v(g0)) = gH. And

we have
r(g(r(9)) " 7(g0)) =
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Hence, ¢ o ¢(¢H,v(g90)) = (9H,~v(g0)), as required. Consequently, @
is a well-defined, continuous inverse map of . Therefore, ¢ is a I'-
homeomorphism, and we conclude that (4.1) is a pull-back diagram.

By Proposition 2.1, q|p(4,) is equivalent to I'/T'y, — T'/I' g, i, which, by
propositions 3.2 and 2.2, is a I'-fibration of '~ANRs. Then, by Proposition
3.3, q|r(ge) is a regular I'-fibration and, since (4.1) is a pull-back diagram,
S0 is q|u.

Finally, due to the arbitrary choice of goH, applying Proposition 3.4,
we conclude that ¢ is a regular I'-fibration. a

Corollary 4.3. Let H be a compact subgroup of a Lie group G. If G is
considered as an H-space by conjugation with the action h * g = hgh™!,
and H acts on G/H by h-gH = hgH, then the projection ¢ : G — G/H,
g gH, is an H-fibration.

Proof. H is isomorphic to A = {(h,h) | h € H} < T = H x H. Since
by Theorem 4.2, ¢ is a regular I'-fibration, we infer that it is also a I'-
fibration, and by Proposition 3.1, that it is a A-fibration. This means
that ¢ : G — G/H is an H-fibration by conjugation. O

Generalizing Proposition 3.2, we are going to show below that every
G-map F — G/H is a G-fibration for arbitrary Lie group actions even
for a G-space E which is not necessarily metrizable.

Theorem 4.4. Let H be a compact subgroup of a Lie group G and let E
be a G-space. Then any G-map p: E — G/H is a G-fibration.

Proof. Suppose that the following commutative diagram of G-maps is
given:

X%E

9 P

X xI—— G/H

Let S = f~ip~l(eH), then X = GS.
Now consider the commutative diagram of H-maps

[ —
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where G is considered as an H-space with the action h * g = hgh™! and
Ce is the constant H-map s — e for all s € S.

Since by Corollary 4.3, ¢ : G — G/H is an H-fibration, there is an
H-map ¢ : S x I — G such that ¢ o 9y(s) = ¢(s,0) = c.(s) = e and
qgo (s, t) = F(s,t), where dy(s) = (s,0).

Note that p(gf(s)) = gp(f(s)) = gH = q(g) for each g € G and s € S.

Define F : X x I — E as F(z) = go(s,t)f(s), for z = gs € X. Then
for each x = gs € X and t € I, we have

F(z,0) = F(gs,0) = go(s,0)f(s) = g (s) = flgs) = f(x),

and
pF(x,t) = p(gp(s,t) f(s)) = gp(e(s,t) f(s))
= 9q(¢(s,t)) = gF (s, 1) = F(gs,1)
= F(x,t).
Clearly, Fisa G-map; therefore, p is a G-fibration. |
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