http://topology.auburn.edu/tp/

http://topology.nipissingu.ca/tp/

CANONICAL PROJECTIONS OF LIE GROUPS AS EQUIVARIANT FIBRATIONS

by

Aura Lucina Kantún-Montiel

Electronically published on May 30, 2019

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	(Online) 2331-1290, (Print) 0146-4124
COPYRIGHT © by Topology Proceedings. All rights reserved.	

E-Published on May 30, 2019

CANONICAL PROJECTIONS OF LIE GROUPS AS EQUIVARIANT FIBRATIONS

AURA LUCINA KANTÚN-MONTIEL

ABSTRACT. Given a Lie group G and its compact subgroup H, we consider G as an H-space endowed with the conjugation action and prove that the quotient projection $G \to G/H$ is an equivariant H-fibration. As a consequence, every G-map $E \to G/H$ is a G-fibration.

1. INTRODUCTION

In equivariant homotopy theory, *G*-fibrations (the equivariant version of a Hurewicz fibration) play such an important role as Hurewicz fibrations do in usual homotopy theory.

Generally speaking, equivariant homotopy theory is well developed for the case when the acting group G is a compact Lie group. For example, one of the notable results is that if H is a closed subgroup of a compact Lie group G, then every G-map $p: E \to G/H$ is a G-fibration for any G-space E (see [12, p. 53]).

A natural question is whether this result remains valid when the acting group G is non-compact.

In [8, Theorem 5.1], it is shown that the projection $G/K \to G/H$ is a *G*-fibration provided that *G* is a compact (not necessarily Lie) group, *K* and *H* are closed subgroups of *G* such that $K \subset H$, and G/K is metrizable. Furthermore, in [6, Corollary 6.5], it is proved that if *G* is a compact metrizable group and *H* is its closed subgroup, then any *G*-map $E \to G/H$ is a *G*-fibration.

In this paper, the above-mentioned results are extended to the case of non-compact Lie groups. Our main results are theorems 4.2 and 4.4.

²⁰¹⁰ Mathematics Subject Classification. 54C55, 54H15, 55P91.

Key words and phrases. G-ANR, G-fibration, G-space.

^{©2019} Topology Proceedings.

A. KANTÚN-MONTIEL

2. NOTATION AND PRELIMINARIES

By the letter G, we will denote a locally compact Hausdorff topological group.

By a *G*-space, we mean a topological space X, together with a fixed continuous action $(g, x) \mapsto gx$ of G on X.

Let X be a G-space. For $x \in X$, the subgroup $G_x = \{g \in G \mid gx = x\}$ is called the *isotropy group* at x and the G-space $G(x) = \{gx \mid g \in G\}$ is called the G-orbit of x.

A subset $A \subset X$ of a *G*-space X is called a *G*-invariant or just invariant if $G(a) \subset A$ for every $a \in A$.

Let X and Y be G-spaces. A continuous map $f: X \to Y$ is called a G-map or equivariant map if f(gx) = gf(x) for every $(g, x) \in G \times X$. If a G-map $f: X \to Y$ is a homeomorphism, then it is called a Ghomeomorphism, and we say that X and Y are G-homeomorphic whenever there exists a G-homeomorphism between them.

A homotopy $F: X \times I \to Y$, where I = [0, 1], is called a *G*-homotopy if it is a *G*-map where $X \times I$ is a *G*-space with the diagonal action g(x, t) = (gx, t).

For a topological group G and its closed subgroup H, we will denote $G/H = \{gH \mid g \in G\}$ the coset space, endowed with the action of G defined by left translations, i.e., $g \cdot g'H = gg'H$ for every $g \in G$ and $g'H \in G/H$.

Proposition 2.1 ([4, Ch. I, Proposition 4.1]). Let G be a compact group, let X be a Hausdorff G-space, and let $x \in X$. Then the G-map $G/G_x \rightarrow G(x)$, $gG_x \mapsto gx$ is a G-homeomorphism, and hence, G/G_x and G(x) are G-homeomorphic.

A *G*-ANR-space is the equivariant version of an absolute neighborhood retract, that is, a *G*-space X is *G*-ANR if for any metrizable *G*-space Y and any equivariant closed embedding $i : X \hookrightarrow Y$, there is an invariant neighborhood U of i(X) in Y such that i(X) is a *G*-retract of U.

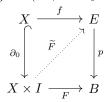
The following significant result, in particular, shows that if G is a compact Lie group, then each one of the orbits of any G-space is a G-ANR.

Proposition 2.2 ([10, Corollary 1.6.7]). Let H be a closed subgroup of a compact Lie group G. Then G/H is a G-ANR.

More results and all the basic notions of equivariant topology can be found in [4] and [12]. For the equivariant theory of retracts we refer the reader to [1], [2], and [3].

3. G-FIBRATIONS

By a *G*-fibration, we mean a natural equivariant version of a Hurewicz fibration: a *G*-map $p: E \to B$ is called a *G*-fibration if it has the equivariant homotopy lifting property (EHLP) with respect to every *G*-space X (see [12, p. 53]). That is to say, for every *G*-space X, every *G*map $f: X \to E$, and every *G*-homotopy $F: X \times I \to B$ such that $F(x,0) = p \circ f(x), x \in X$, there exists a *G*-homotopy $\widetilde{F}: X \times I \to E$ as a filler of the following diagram (i.e., $\widetilde{F} \circ \partial_0 = f$ and $p \circ \widetilde{F} = F$):



where $\partial_0(x) = (x, 0)$.

Clearly, every G-space can be considered as an H-space for any subgroup $H \subset G$. That is, we have a restriction functor from the category of G-spaces to the one of H-spaces. This functor preserves equivariant fibrations.

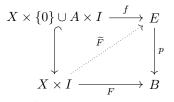
Proposition 3.1 ([9, Proposition 2.2]). Let H be a closed subgroup of a compact group G. If $p: E \to B$ is a G-fibration, then p is an H-fibration.

In the case of compact Lie group actions, G-fibrations appear in the following natural way.

Proposition 3.2 ([8, Proposition 3.1]). Let H be a closed subgroup of a compact Lie group G and let E be a metrizable G-space. Then every G-map $E \to G/H$ is a G-fibration.

Also, we are going to need another kind of G-fibration with stronger conditions.

A G-map $p: E \to B$ of metrizable G-spaces will be called a *regular* G-fibration if for any closed G-subset A of a metrizable G-space X and any diagram of G-maps



there exists a *G*-homotopy $\widetilde{F}: X \times I \to E$ as a filler.

It is not difficult to see that every regular *G*-fibration is a *G*-fibration, taking $A = \emptyset$ in the definition of regular *G*-fibrations and recalling that any *G*-map between metrizable *G*-spaces, having the EHLP with respect to metrizable *G*-spaces, also has the EHLP with respect to all *G*-spaces (see [8, Remark A.1]).

Proposition 3.3 ([7, Theorem 3.4]). Let G be a compact group and $p: E \rightarrow B$ a G-map of metrizable G-spaces. If E and B are G-ANR-spaces and p is a G-fibration, then p is a regular G-fibration.

Regular G-fibrations are locally characterized in the following way.

Proposition 3.4 ([8, Proposition 3.6]). Let G be a compact group and $p: E \to B$ be a G-map of metrizable G-spaces. Suppose that there is a covering \mathcal{U} of B by open G-invariant sets such that the restriction of p, $p^{-1}(U) \to U$ is a regular G-fibration for each $U \in \mathcal{U}$. Then p is a regular G-fibration.

4. G-FIBRATIONS BY CONJUGATION

One of the important examples of *G*-fibrations is the canonical projections of topological groups onto their coset spaces.

Proposition 4.1. Let H be a closed subgroup of a locally compact group G. Then the projection $\pi : G \to G/H$, $g \mapsto gH$, is a G-fibration where both spaces are endowed with the actions defined by left translations.

Proof. The proof is essentially the same as in [5, Proposition 2.2]. In the proof of that proposition, in order to guarantee that the projection $G \to G/H$ is a (non-equivariant) fibration, it is required that the subgroup H be a compact Lie group. However, we observe that it is not necessary to assume that H is a Lie group; instead, we can apply E. G. Skljarenko's result [11, Theorem 15] which claims that the projection $G \to G/H$ is a non-equivariant fibration for every closed subgroup H of a locally compact group G. Further, continuing exactly in the same way as in [5, Proposition 2.2], we get the desired result.

The main object of this paper is the quotient projection $q: G \to G/H$ where H is a compact subgroup of a Lie group G. Here, G is considered as an H-space endowed with the conjugation action, i.e., $h*g = hgh^{-1}$ for every $h \in H$ and $g \in G$. At the same time, we let H act on G/H by the rule $h \cdot gH = hgH$. Below, we will show that the projection $q: G \to G/H$ is an equivariant H-fibration. This is going to be a consequence of our main result.

Theorem 4.2. Let H be a compact subgroup of a Lie group G and let $\Gamma = H \times H$. If Γ acts on G by conjugation, $(h_1, h_2) * g = h_1 g h_2^{-1}$, and on G/H by $(h_1, h_2) \cdot gH = h_1 g H$, then the projection $q : G \to G/H$, $g \mapsto gH$, is a regular Γ -fibration.

Proof. It is easily seen that *q* is a Γ-map, because $q((h_1, h_2) * g) = q(h_1gh_2^{-1}) = h_1gh_2^{-1}H = h_1gH = (h_1, h_2) \cdot gH = (h_1, h_2) \cdot q(g)$.

We are going to apply Proposition 3.4. Let $g_0H \in G/H$ and note that $q^{-1}(\Gamma(g_0H)) = \Gamma(g_0)$.

Since Γ is a compact Lie group, by Proposition 2.2, there is a Γ -invariant neighborhood U of $\Gamma/\Gamma_{g_0} \cong \Gamma(g_0)$ in G and a Γ -retraction $r: U \to \Gamma(g_0)$. Let V = q(U), then $U = q^{-1}(V)$, and we have the following commutative diagram of Γ -maps

where $r_H(gH) = r(g)H$ for every $gH \in V$.

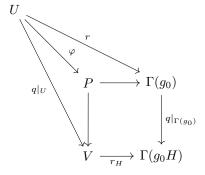
Now we will see that, in fact, this is a pull-back diagram.

Let P be the pull-back of V $\xrightarrow{r_H} \Gamma(g_0 H) \xleftarrow{q|_{\Gamma(g_0)}} \Gamma(g_0)$. This is

$$P = \{ (gH, \gamma(g_0)) \in V \times \Gamma(g_0) \mid r_H(gH) = q(\gamma(g_0)) \}$$

= $\{ (gH, \gamma(g_0)) \mid r(g)H = \gamma(g_0)H \}.$

Then there is a unique $\Gamma\text{-map}\ \varphi:U\to P$ such that the following diagram commutes



and φ is defined by $\varphi(g) = (q(g), r(g))$ for $g \in U$.

A. KANTÚN-MONTIEL

If $\varphi(g) = \varphi(g')$, that is, (q(g), r(g)) = (q(g'), r(g')), then gH = g'Hand r(g) = r(g'). So there is an $h \in H$ such that g' = gh and $r(g) = r(g') = r(gh) = r((e, h^{-1}) * g) = (e, h^{-1}) * r(g) = r(g)h$, which means that h = e, and hence, g' = g. Therefore, φ is injective.

If $(gH, \gamma(g_0)) \in P$, then $(r(g))^{-1}\gamma(g_0) \in H$ implying $g(r(g))^{-1}\gamma(g_0) \in U$, and therefore, φ is surjective. We claim that $\varphi(q(r(g))^{-1}\gamma(g_0)) = (gH, \gamma(g_0))$. Indeed

$$\begin{aligned} \varphi(g(r(g))^{-1}\gamma(g_0)) &= (q(g(r(g))^{-1}\gamma(g_0)), r(g(r(g))^{-1}\gamma(g_0))) \\ &= (q((e, ((r(g))^{-1}\gamma(g_0))^{-1}) * g), r((e, ((r(g))^{-1}\gamma(g_0))^{-1}) * g)) \\ &= ((e, ((r(g))^{-1}\gamma(g_0))^{-1}) \cdot q(g), (e, ((r(g))^{-1}\gamma(g_0))^{-1}) * r(g)) \\ &= (q(g), r(g)(r(g))^{-1}\gamma(g_0)) = (gH, \gamma(g_0)). \end{aligned}$$

Now, let us define $\bar{\varphi}: P \to U$ by $\bar{\varphi}(gH, \gamma(g_0)) = g(r(g))^{-1}\gamma(g_0)$ for $(gH, \gamma(g_0)) \in P$.

Suppose $(g'H, \gamma'(g_0)) = (gH, \gamma(g_0)) \in P$. Then $\gamma' = \gamma$ and there is an $h \in H$ such that g' = gh. So

$$\begin{split} \bar{\varphi}(g'H,\gamma'(g_0)) &= g'(r(g'))^{-1}\gamma'(g_0) \\ &= gh(r(gh))^{-1}\gamma(g_0) \\ &= gh(r((e,h^{-1})*g))^{-1}\gamma(g_0) \\ &= gh((e,h^{-1})*r(g))^{-1}\gamma(g_0) \\ &= gh(r(g)h)^{-1}\gamma(g_0) \\ &= ghh^{-1}(r(g))^{-1}\gamma(g_0) \\ &= g(r(g))^{-1}\gamma(g_0) \\ &= \bar{\varphi}(gH,\gamma(g_0)). \end{split}$$

Let $g \in U$, then

$$\bar{\varphi} \circ \varphi(g) = \bar{\varphi}(q(g), r(g)) = \bar{\varphi}(gH, r(g))$$
$$= g(r(g))^{-1}r(g) = g.$$

Now, let $(gH, \gamma(g_0)) \in P$, then

$$\varphi \circ \bar{\varphi}(gH, \gamma(g_0)) = \varphi(g(r(g))^{-1}\gamma(g_0))$$

= $(q(g(r(g))^{-1}\gamma(g_0)), r(g(r(g))^{-1}\gamma(g_0))).$

Since $(r(g))^{-1}\gamma(g_0) \in H$, we see that $q(g(r(g)))^{-1}\gamma(g_0) = gH$. And we have

$$r(g(r(g))^{-1}\gamma(g_0)) = r((e, (\gamma(g_0))^{-1}r(g)) * g)$$

= $(e, (\gamma(g_0))^{-1}r(g)) * r(g)$
= $r(g)(r(g))^{-1}\gamma(g_0) = \gamma(g_0).$

Hence, $\varphi \circ \overline{\varphi}(gH, \gamma(g_0)) = (gH, \gamma(g_0))$, as required. Consequently, $\overline{\varphi}$ is a well-defined, continuous inverse map of φ . Therefore, φ is a Γ -homeomorphism, and we conclude that (4.1) is a pull-back diagram.

By Proposition 2.1, $q|_{\Gamma(g_0)}$ is equivalent to $\Gamma/\Gamma_{g_0} \to \Gamma/\Gamma_{g_0H}$, which, by propositions 3.2 and 2.2, is a Γ -fibration of Γ -ANRs. Then, by Proposition 3.3, $q|_{\Gamma(g_0)}$ is a regular Γ -fibration and, since (4.1) is a pull-back diagram, so is $q|_U$.

Finally, due to the arbitrary choice of g_0H , applying Proposition 3.4, we conclude that q is a regular Γ -fibration.

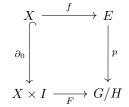
Corollary 4.3. Let H be a compact subgroup of a Lie group G. If G is considered as an H-space by conjugation with the action $h * g = hgh^{-1}$, and H acts on G/H by $h \cdot gH = hgH$, then the projection $q : G \to G/H$, $g \mapsto gH$, is an H-fibration.

Proof. H is isomorphic to $\Delta = \{(h,h) \mid h \in H\} < \Gamma = H \times H$. Since by Theorem 4.2, *q* is a regular Γ -fibration, we infer that it is also a Γ fibration, and by Proposition 3.1, that it is a Δ -fibration. This means that $q: G \to G/H$ is an *H*-fibration by conjugation. \Box

Generalizing Proposition 3.2, we are going to show below that every G-map $E \to G/H$ is a G-fibration for arbitrary Lie group actions even for a G-space E which is not necessarily metrizable.

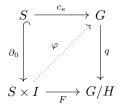
Theorem 4.4. Let H be a compact subgroup of a Lie group G and let E be a G-space. Then any G-map $p: E \to G/H$ is a G-fibration.

Proof. Suppose that the following commutative diagram of G-maps is given:



Let $S = f^{-1}p^{-1}(eH)$, then X = GS.

Now consider the commutative diagram of H-maps



where G is considered as an H-space with the action $h * g = hgh^{-1}$ and c_e is the constant H-map $s \mapsto e$ for all $s \in S$.

Since by Corollary 4.3, $q: G \to G/H$ is an *H*-fibration, there is an *H*-map $\varphi: S \times I \to G$ such that $\varphi \circ \partial_0(s) = \varphi(s,0) = c_e(s) = e$ and $q \circ \varphi(s,t) = F(s,t)$, where $\partial_0(s) = (s,0)$.

Note that p(qf(s)) = qp(f(s)) = qH = q(q) for each $q \in G$ and $s \in S$.

Define $\widetilde{F}: X \times I \to E$ as $\widetilde{F}(x) = g\varphi(s,t)f(s)$, for $x = gs \in X$. Then for each $x = gs \in X$ and $t \in I$, we have

$$\begin{split} \widetilde{F}(x,0) &= \widetilde{F}(gs,0) = g\varphi(s,0)f(s) = gf(s) = f(gs) = f(x), \\ \text{and} \\ p\widetilde{F}(x,t) &= p(g\varphi(s,t)f(s)) = gp(\varphi(s,t)f(s)) \\ &= gq(\varphi(s,t)) = gF(s,t) = F(gs,t) \end{split}$$

=F(x,t).

Clearly, \widetilde{F} is a *G*-map; therefore, p is a *G*-fibration.

References

- [1] S. Antonian, Equivariant embeddings into G-ARs, Glas. Mat. Ser. III 22(42) (1987), no. 2, 503-533.
- Sergey Antonyan, Orbit spaces and unions of equivariant absolute neighborhood extensors, Topology Appl. 146/147 (2005), 289-315.
- [3] Sergey A. Antonyan, Compact group actions on equivariant absolute neighborhood retracts and their orbit spaces, Topology Appl. 158 (2011), no. 2, 141-151.
- [4] Glen E. Bredon, Introduction to Compact Transformation Groups. Pure and Applied Mathematics, Vol. 46. New York-London: Academic Press, 1972.
- [5] Alexander Bykov, The homogeneous space G/H as an equivariant fibrant space, Topology Appl. 157 (2010), no. 17, 2604-2612.
- [6] Alexander Bykov and Raúl Juárez Flores, G-fibrations and twisted products, Topology Appl. 196 (2015), part B, 379-397.
- [7] Alexander Bykov, Raúl Juárez Flores, and Aura Lucina Kantún Montiel, Gfibraciones regulares in Matemáticas y sus Aplicaciones 4. Textos Científicos, Fomento Editorial de la BUAP. Ed. Fernando Macías Romero. Puebla, México: BUAP, 2014. 131–158.
- [8] Alexander Bykov and Aura Lucina Kantún Montiel, Strong G-fibrations and orbit projections, Topology Appl. 163 (2014), 46-65.
- [9] Alexander Bykov and Amalia Torres Juan, Fibrant extensions of free G-spaces, Topology Appl. 159 (2012), no. 4, 1179–1186.
- [10] Richard S. Palais, *The classification of G-spaces*, Mem. Amer. Math. Soc., No. 36. Providence, RI: AMS, 1960.

- [11] E. G. Skljarenko, On the topological structure of locally bicompact groups and their factor spaces in Fifteen Papers on Topology and Logic. American Mathematical Society Translations - Series 2. Book 39. Providence, RI: 1964. 57-82.
- [12] Tammo tom Dieck, Transformation Groups. De Gruyter Studies in Mathematics,8. Berlin: Walter de Gruyter & Co., 1987.

Universidad del Papaloapan; Av. Ferrocarril SN; Ciudad Universitaria; CP 68400, Loma Bonita; Oaxaca, México.

 $Email \ address: \verb"alkantunQunpa.edu.mx"$