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A SHORT ACCOUNT OF WHY THOMPSON’S GROUP F

IS OF TYPE F∞

MATTHEW C. B. ZAREMSKY

Abstract. In 1984 Brown and Geoghegan proved that Thompson’s
group F is of type F∞, making it the first example of an infinite
dimensional torsion-free group of type F∞. Over the decades a
different, shorter proof has emerged, which is more streamlined and
generalizable to other groups. It is difficult, however, to isolate
this proof in the literature just for F itself, with no complicated
generalizations considered and no additional properties proved. The
goal of this expository note then is to present the “modern” proof
that F is of type F∞, and nothing else.

Introduction and History. A classifying space for a group G is a CW
complex Y with π1(Y ) ∼= G and πk(Y ) = 0 for all k 6= 1. If G admits a
classifying space with finite n-skeleton, we say G is of type Fn. Equivalently,
G is of type Fn if it admits a free, cocompact, cellular action on an (n−1)-
connected CW complex. Being of type F1 is equivalent to being finitely
generated, and being of type F2 is equivalent to being finitely presented.
We say G is of type F∞ if it is of type Fn for all n. Thompson’s group F
was the first example of a torsion-free group of type F∞ with no finite
dimensional classifying space. Indeed, F cannot have a finite dimensional
classifying space since it turns out to contain infinite rank free abelian
subgroups, and so in some sense is an “infinite dimensional” group.

The fastest definition of F is via the infinite presentation

F = 〈x0, x1, x2, · · · | xjxi = xixj+1 for all i < j〉.
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