http://topology.auburn.edu/tp/

http://topology.nipissingu.ca/tp/

A short account of why Thompson's group F is of type F_{∞}

by

MATTHEW C. B. ZAREMSKY

Electronically published on June 13, 2020

This file contains only the first page of the paper. The full version of the paper is available to Topology Proceedings subscribers. See http://topology.auburn.edu/tp/subscriptioninfo.html for information.

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	(Online) 2331-1290, (Print) 0146-4124

COPYRIGHT (c) by Topology Proceedings. All rights reserved.

A SHORT ACCOUNT OF WHY THOMPSON'S GROUP F IS OF TYPE F_∞

MATTHEW C. B. ZAREMSKY

ABSTRACT. In 1984 Brown and Geoghegan proved that Thompson's group F is of type F_{∞} , making it the first example of an infinite dimensional torsion-free group of type F_{∞} . Over the decades a different, shorter proof has emerged, which is more streamlined and generalizable to other groups. It is difficult, however, to isolate this proof in the literature just for F itself, with no complicated generalizations considered and no additional properties proved. The goal of this expository note then is to present the "modern" proof that F is of type F_{∞} , and nothing else.

Introduction and History. A classifying space for a group G is a CW complex Y with $\pi_1(Y) \cong G$ and $\pi_k(Y) = 0$ for all $k \neq 1$. If G admits a classifying space with finite n-skeleton, we say G is of type F_n . Equivalently, G is of type F_n if it admits a free, cocompact, cellular action on an (n-1)-connected CW complex. Being of type F_1 is equivalent to being finitely generated, and being of type F_2 is equivalent to being finitely presented. We say G is of type F_{∞} if it is of type F_n for all n. Thompson's group F was the first example of a torsion-free group of type F_{∞} with no finite dimensional classifying space. Indeed, F cannot have a finite dimensional classifying space is an "infinite rank free abelian subgroups, and so in some sense is an "infinite dimensional" group.

The fastest definition of F is via the infinite presentation

 $F = \langle x_0, x_1, x_2, \cdots \mid x_j x_i = x_i x_{j+1} \text{ for all } i < j \rangle.$

77

²⁰²⁰ Mathematics Subject Classification. Primary 20F65; Secondary 57M07. Key words and phrases. Thompson's group, finiteness properties, classifying space. ©2020 Topology Proceedings.

This file contains only the first page of the paper. The full version of the paper is available to Topology Proceedings subscribers. See http://topology.auburn.edu/tp/subscriptioninfo.html for information.