Geometry of Scales

Kyle Austin

University of Tennessee

May 27, 2015

▶ A **cover** \mathcal{U} of X is a collection of subsets of X so that each point of X belongs to some member of \mathcal{U}

- ▶ A **cover** \mathcal{U} of X is a collection of subsets of X so that each point of X belongs to some member of \mathcal{U}
- Scale = cover
- ▶ Let $A \subset X$ and \mathcal{U} a cover of X. We define the **star of** A **against** \mathcal{U} to be the union of all elements of \mathcal{U} which intersect A, denoted by $st(A,\mathcal{U}) = \bigcup \{U \in \mathcal{U} : U \cap A \neq \emptyset\}$.

- A cover U of X is a collection of subsets of X so that each point of X belongs to some member of U
- ▶ Scale = cover
- ▶ Let $A \subset X$ and \mathcal{U} a cover of X. We define the **star of** A **against** \mathcal{U} to be the union of all elements of \mathcal{U} which intersect A, denoted by $st(A,\mathcal{U}) = \bigcup \{U \in \mathcal{U} : U \cap A \neq \emptyset\}$.
- ► Fundamental Example

Let X be metric with subset A and $\mathcal{U} = \{B(x, r) : x \in X\}$ for some r > 0. Then $st(A, \mathcal{U}) = B(A, 2r)$.

- A cover U of X is a collection of subsets of X so that each point of X belongs to some member of U
- ► Scale = cover
- ▶ Let $A \subset X$ and \mathcal{U} a cover of X. We define the **star of** A **against** \mathcal{U} to be the union of all elements of \mathcal{U} which intersect A, denoted by $st(A,\mathcal{U}) = \bigcup \{U \in \mathcal{U} : U \cap A \neq \emptyset\}$.

► Fundamental Example

Let X be metric with subset A and $\mathcal{U} = \{B(x, r) : x \in X\}$ for some r > 0. Then $st(A, \mathcal{U}) = B(A, 2r)$.

▶ We generally think of starring a subset A against a cover \mathcal{U} as taking a \mathcal{U} -thickening or \mathcal{U} -neighborhood of A.

- ▶ A **cover** \mathcal{U} of X is a collection of subsets of X so that each point of X belongs to some member of \mathcal{U}
- ▶ Scale = cover
- ▶ Let $A \subset X$ and \mathcal{U} a cover of X. We define the **star of** A **against** \mathcal{U} to be the union of all elements of \mathcal{U} which intersect A, denoted by $st(A,\mathcal{U}) = \bigcup \{U \in \mathcal{U} : U \cap A \neq \emptyset\}$.

Fundamental Example

Let X be metric with subset A and $\mathcal{U} = \{B(x, r) : x \in X\}$ for some r > 0. Then $st(A, \mathcal{U}) = B(A, 2r)$.

- ▶ We generally think of starring a subset A against a cover \mathcal{U} as taking a \mathcal{U} -thickening or \mathcal{U} -neighborhood of A.
- For covers \mathcal{U} and \mathcal{V} , we define the **star of** \mathcal{U} **against** \mathcal{V} , **denoted by** $st(\mathcal{U}, \mathcal{V})$ to be $\{st(\mathcal{U}, \mathcal{V}) : \mathcal{U} \in \mathcal{U}\}$.

- ▶ A **cover** \mathcal{U} of X is a collection of subsets of X so that each point of X belongs to some member of \mathcal{U}
- ▶ Scale = cover
- ▶ Let $A \subset X$ and \mathcal{U} a cover of X. We define the **star of** A **against** \mathcal{U} to be the union of all elements of \mathcal{U} which intersect A, denoted by $st(A,\mathcal{U}) = \bigcup \{U \in \mathcal{U} : U \cap A \neq \emptyset\}$.

Fundamental Example

Let X be metric with subset A and $\mathcal{U} = \{B(x, r) : x \in X\}$ for some r > 0. Then $st(A, \mathcal{U}) = B(A, 2r)$.

- ▶ We generally think of starring a subset A against a cover \mathcal{U} as taking a \mathcal{U} -thickening or \mathcal{U} -neighborhood of A.
- For covers \mathcal{U} and \mathcal{V} , we define the **star of** \mathcal{U} **against** \mathcal{V} , **denoted by** $st(\mathcal{U}, \mathcal{V})$ to be $\{st(\mathcal{U}, \mathcal{V}) : \mathcal{U} \in \mathcal{U}\}$.

- Scale = cover
- ▶ \mathcal{U} refines \mathcal{V} if every element of \mathcal{U} is contained in some member of \mathcal{V} (this is equivalent to saying that \mathcal{V} coarsens \mathcal{U}).

- ▶ Scale = cover
- ▶ \mathcal{U} refines \mathcal{V} if every element of \mathcal{U} is contained in some member of \mathcal{V} (this is equivalent to saying that \mathcal{V} coarsens \mathcal{U}).
- \mathcal{U} star refines \mathcal{V} if $st(\mathcal{U},\mathcal{U})$ refines \mathcal{V} .

- ▶ Scale = cover
- ▶ \mathcal{U} refines \mathcal{V} if every element of \mathcal{U} is contained in some member of \mathcal{V} (this is equivalent to saying that \mathcal{V} coarsens \mathcal{U}).
- \mathcal{U} star refines \mathcal{V} if $st(\mathcal{U},\mathcal{U})$ refines \mathcal{V} .
- ▶ Starring Captures Geometry: If $\mathcal U$ star refines $\mathcal V$ then $\mathcal U$ is like a cover by points and $\mathcal V$ is a cover by neighborhoods of the points $\mathcal U$.

- ▶ Scale = cover
- ▶ \mathcal{U} refines \mathcal{V} if every element of \mathcal{U} is contained in some member of \mathcal{V} (this is equivalent to saying that \mathcal{V} coarsens \mathcal{U}).
- \mathcal{U} star refines \mathcal{V} if $st(\mathcal{U},\mathcal{U})$ refines \mathcal{V} .
- ▶ Starring Captures Geometry: If \mathcal{U} star refines \mathcal{V} then \mathcal{U} is like a cover by points and \mathcal{V} is a cover by neighborhoods of the points \mathcal{U} .

▶ Big Idea

- In small scale geometry, one consider collections of scales on X so that each scale can be interpreted as neighborhoods of a smaller scale.
- ▶ In large scale geometry, one considers collections of scales on *X* so that each scale can be intepreted as the points of a bigger scale.

Let \mathcal{C} be a collection of covers of X.

Small Scale Structure

C is a small scale structure (uniform structure) if

▶ for every $\mathcal{U}, \mathcal{V} \in \mathcal{C}$ there exists $\mathcal{W} \in \mathcal{C}$ that $st(\mathcal{W}, \mathcal{W})$ refines both \mathcal{U} and \mathcal{V} .

Let \mathcal{C} be a collection of covers of X.

Small Scale Structure

 ${\cal C}$ is a small scale structure (uniform structure) if

- ▶ for every $\mathcal{U}, \mathcal{V} \in \mathcal{C}$ there exists $\mathcal{W} \in \mathcal{C}$ that $st(\mathcal{W}, \mathcal{W})$ refines both \mathcal{U} and \mathcal{V} .
- $ightharpoonup \mathcal{C}$ is closed under coarsenings

Let C be a collection of covers of X.

Small Scale Structure

 $\mathcal C$ is a small scale structure (uniform structure) if

- ▶ for every $\mathcal{U}, \mathcal{V} \in \mathcal{C}$ there exists $\mathcal{W} \in \mathcal{C}$ that $st(\mathcal{W}, \mathcal{W})$ refines both \mathcal{U} and \mathcal{V} .
- $ightharpoonup \mathcal{C}$ is closed under coarsenings
- ▶ **Hausdorff Property**: for every $x, y \in X$ there exists a cover $\mathcal{U} \in \mathcal{C}$ so that $x, y \notin U$ for any $U \in \mathcal{U}$.

Let C be a collection of covers of X.

Small Scale Structure

 $\mathcal C$ is a small scale structure (uniform structure) if

- ▶ for every $\mathcal{U}, \mathcal{V} \in \mathcal{C}$ there exists $\mathcal{W} \in \mathcal{C}$ that $st(\mathcal{W}, \mathcal{W})$ refines both \mathcal{U} and \mathcal{V} .
- $ightharpoonup \mathcal{C}$ is closed under coarsenings
- ▶ **Hausdorff Property**: for every $x, y \in X$ there exists a cover $\mathcal{U} \in \mathcal{C}$ so that $x, y \notin U$ for any $U \in \mathcal{U}$.

Large Scale Structure

 ${\cal C}$ is a large scale structure structure if

▶ for every $U, V \in C$ there exists $W \in C$ that coarsens st(U, V).

Let C be a collection of covers of X.

Small Scale Structure

 $\mathcal C$ is a small scale structure (uniform structure) if

- ▶ for every $\mathcal{U}, \mathcal{V} \in \mathcal{C}$ there exists $\mathcal{W} \in \mathcal{C}$ that $st(\mathcal{W}, \mathcal{W})$ refines both \mathcal{U} and \mathcal{V} .
- $ightharpoonup \mathcal{C}$ is closed under coarsenings
- ▶ **Hausdorff Property**: for every $x, y \in X$ there exists a cover $\mathcal{U} \in \mathcal{C}$ so that $x, y \notin U$ for any $U \in \mathcal{U}$.

Large Scale Structure

 $\mathcal C$ is a large scale structure structure if

- ▶ for every $\mathcal{U}, \mathcal{V} \in \mathcal{C}$ there exists $\mathcal{W} \in \mathcal{C}$ that coarsens $st(\mathcal{U}, \mathcal{V})$.
- \triangleright C is closed under refinements

Let \mathcal{C} be a collection of covers of X.

Small Scale Structure

C is a small scale structure (uniform structure) if

- ▶ for every $\mathcal{U}, \mathcal{V} \in \mathcal{C}$ there exists $\mathcal{W} \in \mathcal{C}$ that $st(\mathcal{W}, \mathcal{W})$ refines both \mathcal{U} and \mathcal{V} .
- $ightharpoonup \mathcal{C}$ is closed under coarsenings
- ▶ **Hausdorff Property**: for every $x, y \in X$ there exists a cover $\mathcal{U} \in \mathcal{C}$ so that $x, y \notin U$ for any $U \in \mathcal{U}$.

Large Scale Structure

 ${\cal C}$ is a large scale structure structure if

- ▶ for every $U, V \in C$ there exists $W \in C$ that coarsens st(U, V).
- ightharpoonup C is closed under refinements
- Optional (Anti)Hausdorff Property: The union of any finite number of bounded sets is bounded.

The Most Important Example: Assume X is metric. The ss-structure associated to the metric is the collection of covers which coarsen the cover by ϵ -balls for some $\epsilon > 0$ (covers with positive Lebesgue number). The Is-structure associated to the metric is the collection of covers which refine the cover by r-balls for some r > 0 (covers with finite mesh).

The Most Important Example: Assume X is metric. The ss-structure associated to the metric is the collection of covers which coarsen the cover by ϵ -balls for some $\epsilon > 0$ (covers with positive Lebesgue number). The Is-structure associated to the metric is the collection of covers which refine the cover by r-balls for some r > 0 (covers with finite mesh).

▶ $Leb(\mathcal{U}) = \sup\{\lambda > 0 : \{B(x, \lambda) : x \in X\} \text{ refines } \mathcal{U}\}.$

The Most Important Example: Assume X is metric. The ss-structure associated to the metric is the collection of covers which coarsen the cover by ϵ -balls for some $\epsilon > 0$ (covers with positive Lebesgue number). The Is-structure associated to the metric is the collection of covers which refine the cover by r-balls for some r > 0 (covers with finite mesh).

- ▶ $Leb(\mathcal{U}) = \sup\{\lambda > 0 : \{B(x,\lambda) : x \in X\} \text{ refines } \mathcal{U}\}.$
- ▶ $mesh(\mathcal{U}) = \inf\{\lambda > 0 : \{B(x,\lambda) : x \in X\} \text{ coarsens } \mathcal{U}\}.$

The Most Important Example: Assume X is metric. The ss-structure associated to the metric is the collection of covers which coarsen the cover by ϵ -balls for some $\epsilon > 0$ (covers with positive Lebesgue number). The Is-structure associated to the metric is the collection of covers which refine the cover by r-balls for some r > 0 (covers with finite mesh).

- ▶ $Leb(\mathcal{U}) = \sup\{\lambda > 0 : \{B(x,\lambda) : x \in X\} \text{ refines } \mathcal{U}\}.$
- ▶ $mesh(\mathcal{U}) = \inf\{\lambda > 0 : \{B(x,\lambda) : x \in X\} \text{ coarsens } \mathcal{U}\}.$

Topological Groups

Let G be a topological group.

Topological Groups

Let G be a topological group.

Canonical ss-structure on G

Let $\{U_\alpha:\alpha\in A\}$ be a neighborhood base at the identity such that $U_\beta\cdot U_\beta\subset U_\alpha$ for all $\alpha>\beta$. One can define a ss-structure by declaring the uniformly bounded covers of G to be the collections $\{gU_\alpha:g\in G\}$ for $\alpha\in A$.

Topological Groups

Let G be a topological group.

Canonical ss-structure on G

Let $\{U_{\alpha}: \alpha \in A\}$ be a neighborhood base at the identity such that $U_{\beta} \cdot U_{\beta} \subset U_{\alpha}$ for all $\alpha > \beta$. One can define a ss-structure by declaring the uniformly bounded covers of G to be the collections $\{gU_{\alpha}: g \in G\}$ for $\alpha \in A$.

Remark

It is easy to see that this ss-structure generates the original topology on G.

Canonical Is-structure on G

Let K be a compact subset of G. We define the uniformly bounded covers of G to be the collections $\{gK : g \in G\}$ as K ranges over all compact subsets of G.

Canonical Is-structure on G

Let K be a compact subset of G. We define the uniformly bounded covers of G to be the collections $\{gK : g \in G\}$ as K ranges over all compact subsets of G.

Remark

If G is countable and discrete then the above construction boils down to taking uniformly bounded covers to be $\{gF:g\in G\}$ where G ranges over the finite subsets of G. The resulting ls-structure is precisely the ls-structure inherited from the metric induced by the Cayley graph of G, provided G is finitely generated.

Canonical Is-structure on G

Let K be a compact subset of G. We define the uniformly bounded covers of G to be the collections $\{gK : g \in G\}$ as K ranges over all compact subsets of G.

Remark

If G is countable and discrete then the above construction boils down to taking uniformly bounded covers to be $\{gF:g\in G\}$ where G ranges over the finite subsets of G. The resulting ls-structure is precisely the ls-structure inherited from the metric induced by the Cayley graph of G, provided G is finitely generated.

Remark

The notion of translation is fundamental to applications of Is-geometry. For example, partial bijections of "bounded translation" on a metric space X act as partial isometries on $I^2(X)$ by shifting part of the domains of I^2 functions and killing the rest.

Small Scale Connections to Topology

▶ If X is metric, then $A \subset X$ is a neighborhood of a point x if there exists some $\epsilon > 0$ such that $st(x, \{B(y, \frac{\epsilon}{2}) : y \in X\}) = B(x, \epsilon) \subset A$.

Small Scale Connections to Topology

- ▶ If X is metric, then $A \subset X$ is a neighborhood of a point x if there exists some $\epsilon > 0$ such that $st(x, \{B(y, \frac{\epsilon}{2}) : y \in X\}) = B(x, \epsilon) \subset A$.
- ▶ Every small scale structure induces a topology on X as follows: $A \subset X$ is a neighborhood of a point x if there exists a uniform cover \mathcal{U} such that $st(x,\mathcal{U}) \subset A$.

Small Scale Connections to Topology

- ▶ If X is metric, then $A \subset X$ is a neighborhood of a point x if there exists some $\epsilon > 0$ such that $st(x, \{B(y, \frac{\epsilon}{2}) : y \in X\}) = B(x, \epsilon) \subset A$.
- ▶ Every small scale structure induces a topology on X as follows: $A \subset X$ is a neighborhood of a point x if there exists a uniform cover \mathcal{U} such that $st(x,\mathcal{U}) \subset A$.
- ▶ A compact Hausdorff space has a unique uniform structure that generates the topology: It consists of all coarsenings of finite open covers.

Reminder about Partitions of unity

▶ A partition of unity is traditionally viewed as a collection of functions $\{f_s: X \to [0,1]: s \in S\}$ such that $\sum_{s \in S} f_s(x) = 1$ for each $x \in X$.

Reminder about Partitions of unity

- ▶ A partition of unity is traditionally viewed as a collection of functions $\{f_s: X \to [0,1]: s \in S\}$ such that $\sum_{s \in S} f_s(x) = 1$ for each $x \in X$.
- ▶ A more geometric approach is to view partitions of unity as functions $f: X \to \ell^1(S)$ such that $||f(x)||_1 = 1$ for each $x \in X$.

Reminder about Partitions of unity

- ▶ A partition of unity is traditionally viewed as a collection of functions $\{f_s: X \to [0,1]: s \in S\}$ such that $\sum_{s \in S} f_s(x) = 1$ for each $x \in X$.
- ▶ A more geometric approach is to view partitions of unity as functions $f: X \to \ell^1(S)$ such that $||f(x)||_1 = 1$ for each $x \in X$.

Barycentric Subdivision

A **derivative** of a continuous partition of unity $f: X \to K$ where K is a simplicial complex(with metric topology) is the induced partition of unity $X \to K \to b(K)$ where b(K) is the first barycentric subdivision of K.

Dydak partitions of unity paper

Given a continuous partition of unity $f: X \to K$, the cover of X by the carriers of f are star refined by the carriers of the derivative of f.

Proposition

A topological Hausdorff space X is paracompact if and only if the collection of open covers of X forms a base for a uniform structure on X, and that uniform structure generates the original topology on X.

Compactness, paracompactness, barycentric subdivision, and topological groups are uniform concepts.

All Scales come from Metrics I

▶ A function $f: X \to Y$ of ss-structures is **ss-continuous** if the preimage of each uniform cover is a uniform cover.

All Scales come from Metrics I

- ▶ A function $f: X \to Y$ of ss-structures is **ss-continuous** if the preimage of each uniform cover is a uniform cover.
- ▶ Big Idea: There is a natural "Identification" of uniform covers of an ss-structure X and pseudo-metrics d on X such that $id_X: X \to (X, d)$ is ss-continuous.

All Scales come from Metrics I

- ▶ A function $f: X \to Y$ of ss-structures is **ss-continuous** if the preimage of each uniform cover is a uniform cover.
- ▶ Big Idea: There is a natural "Identification" of uniform covers of an ss-structure X and pseudo-metrics d on X such that $id_X: X \to (X, d)$ is ss-continuous.

Theorem

Let X be an ss-structure. The uniform covers on X are precisely the union of all uniform covers from pseudo-metric spaces (X,d) so that $id_X: X \to (X,d)$ is ss-continuous.

All Scales come from Metrics II

A function f : X → Y of Is-structures is Is-continuous if the image of each uniformly bounded cover is a uniformly bounded cover. (Look at metric case separately)

All Scales come from Metrics II

- A function f: X → Y of Is-structures is Is-continuous if the image of each uniformly bounded cover is a uniformly bounded cover. (Look at metric case separately)
- ▶ Big Idea: There is a natural "Identification" of uniformly bounded covers of an Is-structure X and ∞ -metrics d on X such that $id_X: (X, d) \to X$ is Is-continuous.

All Scales come from Metrics II

- A function f : X → Y of Is-structures is Is-continuous if the image of each uniformly bounded cover is a uniformly bounded cover. (Look at metric case separately)
- ▶ Big Idea: There is a natural "Identification" of uniformly bounded covers of an Is-structure X and ∞ -metrics d on X such that $id_X: (X, d) \to X$ is Is-continuous.

Theorem

Let X be an Is-structure. The uniformly bounded covers on X are precisely the union of all uniformly bounded covers coming from ∞ -metric spaces (X,d) so that $id_X:(X,d)\to X$ is Is-continuous.

Ostrand Type Result

Ostrand Theorem

Let $n \geq 0$. A paracompact space X has covering dimensions less than or equal to n if and only if for every open covering $\mathcal U$ of X, there exists an open refinement $\mathcal V = \bigcup_{i=1}^{n+1} \mathcal V_i$ such that $\mathcal V_i$ is a disjoint family for each $1 \leq i \leq n+1$.

▶ Let X be metric and $R \ge 0$. A family of subsets $\mathcal F$ is said to be R-disjoint if d(U,V) > R for each $U,V \in \mathcal F$. (They are disjoint at scale R.)

- ▶ Let X be metric and $R \ge 0$. A family of subsets $\mathcal F$ is said to be R-disjoint if d(U,V) > R for each $U,V \in \mathcal F$. (They are disjoint at scale R.)
- ▶ In the case of geodesic metric spaces, this is equivalent to $st(\mathcal{F}, \{B(x, \frac{R}{2} : x \in X)\})$ being a disjoint family.

- ▶ Let X be metric and $R \ge 0$. A family of subsets \mathcal{F} is said to be R-disjoint if d(U, V) > R for each $U, V \in \mathcal{F}$. (They are disjoint at scale R.)
- ▶ In the case of geodesic metric spaces, this is equivalent to $st(\mathcal{F}, \{B(x, \frac{R}{2} : x \in X)\})$ being a disjoint family.
- ▶ For the case of large scale structure X and uniformly bounded cover \mathcal{U} , we say that the collection \mathcal{F} is \mathcal{U} -disjoint if $st(\mathcal{F},\mathcal{U})$ is a disjoint family.

- ▶ Let X be metric and $R \ge 0$. A family of subsets \mathcal{F} is said to be R-disjoint if d(U, V) > R for each $U, V \in \mathcal{F}$. (They are disjoint at scale R.)
- ▶ In the case of geodesic metric spaces, this is equivalent to $st(\mathcal{F}, \{B(x, \frac{R}{2} : x \in X)\})$ being a disjoint family.
- ▶ For the case of large scale structure X and uniformly bounded cover \mathcal{U} , we say that the collection \mathcal{F} is \mathcal{U} -disjoint if $st(\mathcal{F},\mathcal{U})$ is a disjoint family.

Definition/Theorem

Let X be a metric space. 1) X is said to have **asymptotic** dimension at most n provided that for each R>0 there exists a uniformly bounded cover of X with Lebesgue number greater than R and having multiplicity at most n+1.

Definition/Theorem

Let X be a metric space. 1) X is said to have **asymptotic** dimension at most n provided that for each R > 0 there exists a uniformly bounded cover of X with Lebesgue number greater than R and having multiplicity at most n+1.

2) X is said to have **asymptotic dimension at most** n provided that for each R > 0 there exists a uniformly bounded cover $\mathcal{V} = \bigcup_{i=1}^{n+1} \mathcal{V}_i$ where \mathcal{V}_i is an R-disjoint family for each $i = 1, 2, \ldots, n+1$.

Proposition

Let X be a large scale structure and \mathcal{U} a uniformly bounded cover of X. The following are equivalent:

1) There exists a uniformly bounded cover V which coarsens U with multiplicity at most n+1.

Proposition

Let X be a large scale structure and \mathcal{U} a uniformly bounded cover of X. The following are equivalent:

- 1) There exists a uniformly bounded cover V which coarsens U with multiplicity at most n+1.
- 2) There exists a uniformly bounded cover $\mathcal{V} = \bigcup_{i=1}^{n+1} \mathcal{V}_i$ where $st(\mathcal{V}_i, \mathcal{U})$ is a disjoint collection for each i = 1, 2, ..., n.