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I A cover U of X is a collection of subsets of X so that each
point of X belongs to some member of U

I Scale = cover

I Let A ⊂ X and U a cover of X . We define the star of A
against U to be the union of all elements of U which
intersect A, denoted by st(A,U) = ∪{U ∈ U : U ∩ A 6= ∅}.

I Fundamental Example

Let X be metric with subset A and U = {B(x , r) : x ∈ X} for
some r > 0. Then st(A,U) = B(A, 2r).

I We generally think of starring a subset A against a cover U as
taking a U-thickening or U-neighborhood of A.

I For covers U and V, we define the star of U against V,
denoted by st(U , V) to be {st(U,V) : U ∈ U}.
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I Scale = cover

I U refines V if every element of U is contained in some
member of V (this is equivalent to saying that V coarsens U).

I U star refines V if st(U ,U) refines V.

I Starring Captures Geometry: If U star refines V then U is like
a cover by points and V is a cover by neighborhoods of the
points U .

I Big Idea

I In small scale geometry, one consider collections of scales on X
so that each scale can be interpreted as neighborhoods of a
smaller scale.

I In large scale geometry, one considers collections of scales on
X so that each scale can be intepreted as the points of a
bigger scale.
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Let C be a collection of covers of X .

Small Scale Structure
C is a small scale structure (uniform structure) if

I for every U ,V ∈ C there exists W ∈ C that st(W,W) refines
both U and V.

I C is closed under coarsenings

I Hausdorff Property: for every x , y ∈ X there exists a cover
U ∈ C so that x , y /∈ U for any U ∈ U .

Large Scale Structure

C is a large scale structure structure if

I for every U ,V ∈ C there exists W ∈ C that coarsens st(U ,V).

I C is closed under refinements

I Optional (Anti)Hausdorff Property: The union of any finite
number of bounded sets is bounded.
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Most Important Examples of these Structures

The Most Important Example: Assume X is metric. The
ss-structure associated to the metric is the collection of covers
which coarsen the cover by ε−balls for some ε > 0 (covers with
positive Lebesgue number). The ls-structure associated to the
metric is the collection of covers which refine the cover by r−balls
for some r > 0 (covers with finite mesh).

I Leb(U) = sup{λ > 0 : {B(x , λ) : x ∈ X} refines U}.
I mesh(U) = inf{λ > 0 : {B(x , λ) : x ∈ X} coarsens U}.
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Topological Groups

Let G be a topological group.

Canonical ss-structure on G
Let {Uα : α ∈ A} be a neighborhood base at the identity such that
Uβ · Uβ ⊂ Uα for all α > β. One can define a ss-structure by
declaring the uniformly bounded covers of G to be the collections
{gUα : g ∈ G} for α ∈ A.

Remark
It is easy to see that this ss-structure generates the original
topology on G .
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Canonical ls-structure on G
Let K be a compact subset of G . We define the uniformly
bounded covers of G to be the collections {gK : g ∈ G} as K
ranges over all compact subsets of G .

Remark
If G is countable and discrete then the above construction boils
down to taking uniformly bounded covers to be {gF : g ∈ G}
where G ranges over the finite subsets of G . The resulting
ls-structure is precisely the ls-structure inherited from the metric
induced by the Cayley graph of G , provided G is finitely generated.

Remark
The notion of translation is fundamental to applications of
ls-geometry. For example, partial bijections of “bounded
translation” on a metric space X act as partial isometries on l2(X )
by shifting part of the domains of l2 functions and killing the rest.
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Small Scale Connections to Topology

I If X is metric, then A ⊂ X is a neighborhood of a point x if
there exists some ε > 0 such that
st(x , {B(y , ε2) : y ∈ X}) = B(x , ε) ⊂ A.

I Every small scale structure induces a topology on X as
follows: A ⊂ X is a neighborhood of a point x if there exists a
uniform cover U such that st(x ,U) ⊂ A.

I A compact Hausdorff space has a unique uniform structure
that generates the topology: It consists of all coarsenings of
finite open covers.
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Reminder about Partitions of unity

I A partition of unity is traditionally viewed as a collection of
functions {fs : X → [0, 1] : s ∈ S} such that

∑
s∈S fs(x) = 1

for each x ∈ X .

I A more geometric approach is to view partitions of unity as
functions f : X → `1(S) such that ||f (x)||1 = 1 for each
x ∈ X .
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Barycentric Subdivision

A derivative of a continuous partition of unity f : X → K where
K is a simplicial complex(with metric topology) is the induced
partition of unity X → K → b(K ) where b(K ) is the first
barycentric subdivision of K .

Dydak partitions of unity paper

Given a continuous partition of unity f : X → K , the cover of X by
the carriers of f are star refined by the carriers of the derivative of
f .



Proposition

A topological Hausdorff space X is paracompact if and only if the
collection of open covers of X forms a base for a uniform structure
on X , and that uniform structure generates the original topology
on X .



Compactness, paracompactness, barycentric subdivision, and
topological groups are uniform concepts.



All Scales come from Metrics I

I A function f : X → Y of ss-structures is ss-continuous if the
preimage of each uniform cover is a uniform cover.

I Big Idea: There is a natural “Identification” of uniform covers
of an ss-structure X and pseudo-metrics d on X such that
idX : X → (X , d) is ss-continuous.

Theorem
Let X be an ss-structure. The uniform covers on X are precisely
the union of all uniform covers from pseudo-metric spaces (X , d)
so that idX : X → (X , d) is ss-continuous.
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All Scales come from Metrics II

I A function f : X → Y of ls-structures is ls-continuous if the
image of each uniformly bounded cover is a uniformly
bounded cover. (Look at metric case separately)

I Big Idea: There is a natural “Identification” of uniformly
bounded covers of an ls-structure X and ∞-metrics d on X
such that idX : (X , d)→ X is ls-continuous.

Theorem
Let X be an ls-structure. The uniformly bounded covers on X are
precisely the union of all uniformly bounded covers coming from
∞-metric spaces (X , d) so that idX : (X , d)→ X is ls-continuous.
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Ostrand Type Result

Ostrand Theorem
Let n ≥ 0. A paracompact space X has covering dimensions less
than or equal to n if and only if for every open covering U of X ,

there exists an open refinement V =
n+1⋃
i=1
Vi such that Vi is a

disjoint family for each 1 ≤ i ≤ n + 1.



Disjointness

I Let X be metric and R ≥ 0. A family of subsets F is said to
be R−disjoint if d(U,V ) > R for each U,V ∈ F . (They are
disjoint at scale R.)

I In the case of geodesic metric spaces, this is equivalent to
st(F , {B(x , R2 : x ∈ X )}) being a disjoint family.

I For the case of large scale structure X and uniformly bounded
cover U , we say that the collection F is U-disjoint if st(F ,U)
is a disjoint family.
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Definition/Theorem

Let X be a metric space. 1) X is said to have asymptotic
dimension at most n provided that for each R > 0 there exists a
uniformly bounded cover of X with Lebesgue number greater than
R and having multiplicity at most n + 1.

m
2) X is said to have asymptotic dimension at most n provided
that for each R > 0 there exists a uniformly bounded cover
V =

⋃n+1
i=1 Vi where Vi is an R-disjoint family for each

i = 1, 2, . . . , n + 1.
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Proposition

Let X be a large scale structure and U a uniformly bounded cover
of X . The following are equivalent:
1) There exists a uniformly bounded cover V which coarsens U
with multiplicity at most n + 1.

2) There exists a uniformly bounded cover V =
⋃n+1

i=1 Vi where
st(Vi ,U) is a disjoint collection for each i = 1, 2, . . . , n.
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